No mantle residues in the Isua Supracrustal Belt

Research output: Contribution to journalJournal articlepeer-review

Documents

  • Fulltext

    Final published version, 2.44 MB, PDF document

A critical component of our understanding of the evolution of Earth's mantle comes from rocks identified as direct mantle samples. Eoarchaean dunite lenses from the Isua Supracrustal Belt (ISB), North Atlantic Craton, Greenland, have been previously interpreted as depleted mantle wedge residues, complementary to arc-like volcanic rocks in the supracrustal sequence. This would place the ISB dunites among Earth's oldest mantle samples. We present new major element, platinum-group element (PGE) and Re-Os isotopic data for the ISB dunites, and critically assess the criteria previously used to invoke a mantle origin for the dunites. We find no evidence that uniquely supports a mantle origin. Instead, evidence of chromite and Os-Ir alloy fractionation, consistent Pt and Pd depletion, elevated Ni contents, and trace element systematics indicate that the dunites formed as olivine ± chromite cumulates with varying amounts of intercumulus melt. Their compositions indicate crystallisation from magmas represented by ISB volcanic rocks, and their Re-Os model ages overlap the ∼3720 Ma age of the volcanic sequence, consistent with the dunites representing magma chambers or conduits that fed the volcanic eruptions. Formation of the Isua dunites as cumulates removes an important line of evidence used to interpret the ISB as an ophiolite, and highlights the risks of using criteria that do not discriminate mantle residues from olivine-rich cumulates. Extending this reasoning to other Eoarchaean crustal peridotites previously identified as mantle rocks suggests there may be no mantle residues anywhere in the Itsaq Gneiss Complex, and that the oldest mantle samples may only be found as xenoliths in volcanic rocks.
Original languageEnglish
Article number117348
JournalEarth and Planetary Science Letters
Volume579
Number of pages11
ISSN0012-821X
DOIs
Publication statusPublished - 1 Feb 2022

    Research areas

  • mantle, cumulate, olivine, platinum group elements, Re-Os isotopes

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 288182689