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Chapter 1

About Vidar

In Norse mythology, Vı́darr, which is possibly derived from v́ıdr ”for-
est” and arr ”warrior” (often Anglicised Vidar), is the son of Odin
and the giantess Gŕıdr. During Ragnarök, Odin is eaten by the wolf
Fenrir, and Vı́darr will avenge his death by killing the beast. Accord-
ing to the Vafrúdnismál, Vı́darr kills Fenrir by stepping on his lower
jaw with his foot, on which he wears a shoe made of the pieces from
the toe and heel that were cut and thrown away when people’s shoes
were made. The shoes protected him from being devoured by Fenrir.
Having his foot placed, Vı́darr will take the wolf’s upper jaw and tear
the beast apart. However, according to the Völuspá Vı́darr uses his
sword to kill the wolf by driving it straight into the heart. In the re-
born world that arises after Ragnarök, Vı́darr is preordained to return
with his brother Váli. Vı́darr is referred to as ”the silent son of Odin”
in the Skáldskaparmál (second part of the Prose Edda) (Encyclopædia
Britannica, 2007).

During recent years, dynamic stand level models for Norway spruce, oak, beech, and Douglas fir
in Denmark have been developed (Leary et al., 1999; Skovsgaard et al., 1999; Johannsen et al., 1999;
Johannsen, 1999; Nord-Larsen, 2006b; Christensen et al., 2003). The models are in the present form
merely mathematical expressions and estimated parameter values and are not easily accessible for
the potential users of such models in practical forestry. Hence, the aim of the Vidar-project is to
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develop a practical and user-friendly tool for the development of growth models that will distributed
along with the periodical SKOVEN and will be freely available on the Forest & Landscape homepage.

The basis of Vidar is the dynamic stand-level growth models developed for beech, oak, Nor-
way spruce, Douglas fir, Sitka spruce, and silver fir. However, Vidar is dependent on a series of
auxiliary functions that describe relationships between different stand variables to aid the use and
interpretation of the growth models. Further, as more data and knowledge on dynamic growth
models has become available since the development of the first models some of the models have
been re-estimated using a common model for all species. This report describes the development
and estimation of the dynamic growth models and reports the development and estimation of the
additional functions in Vidar.
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Chapter 2

Data

The dynamic stand-level models and auxiliary functions were estimated on permanent sample plot
data from the even-aged and mono-specific spacing, species and thinning experiments of Forest &
Landscape. The data included 69 experiments in beech (201 individual plots), 53 experiments in
oak (141 individual plots), 75 experiments in Norway spruce (366 individual plots), 35 experiments
in Sitka spruce (77 individual plots), 26 experiments in silver fir (28 individual plots), and 23
experiments in Douglas fir (35 individual plots). Plot sizes varied between 0.0022 and 2.65 ha, with
an average ranging from 0.16 to 0.34 ha, depending on species. The experiments were located in
most parts of Denmark (figure 2.1) and covered a wide range of different site types and growth
conditions although the majority of plots with deciduous species were located in the eastern parts
of the country.

2.1 Measurements

The data were collected from 1872 to 2008 and the stands were observed for 10 to 131 years. Despite
the long time span, data collection on the permanent sample plots has been remarkably uniform. In
the earliest measurements diameter readings were taken at 1/20 tree height. After 1880 trees were
generally marked permanently at 1.3 m (until 1902 at 4.15 feet ∼1.3m), numbered and recorded
individually. The conversion to the metric system in 1902 had little influence on the measurement
practises except that trees were now recorded in tally lists to 1-cm rather than 1-inch diameter
classes. Consequently, the data used for modeling growth and yield represents more than 120 years
of consistent measurements. The total number of measurement occasions was 2104 for beech, 1580
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Figure 2.1: Map of the 281 experiments used for estimating site-specific height growth models.
European beech: 69 experiments with 201 plots, oak: 53 experiments with 141 plots, Norway
spruce: 75 experiments with 366 plots, Sitka spruce: 35 experiments with 77 plots, European silver
fir: 26 experiments with 28 plots, and Douglas fir: 23 experiments with 35 plots.
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for oak, 3710 for Norway spruce, 793 for Sitka spruce, 213 for European silver fir, and 431 for Douglas
fir (please note that the number of measurements in individual model estimation procedures may be
less than the total number because of differences in data requirements for the individual procedures).

In the majority of plots, all trees were numbered, marked permanently at breast height (1.3 m)
and recorded individually. In some very young stands with high stem numbers, trees were recorded
in tally lists to 1-cm diameter classes (before 1902 to 1-inch classes). Also in very young stands
with high stem numbers, only a subset of stems were measured, e.g. every fifth or tenth row.
Measurements of diameter were obtained by averaging two perpendicular calliper readings taken at
breast height (1.3 m) for each tree. Observations also included records on whether the tree was alive
or dead at the time of measurement. The height of live trees was measured using a hypsometer and
felled trees were measured on the ground using a tape measure. About 30 tree height measurements
per plot were obtained on each measurement occasion.

2.2 Calculations

Stem numbers, N (ha−1), were calculated as the number of individual trees per hectare taller than
1.3 m. When trees forked below 1.3 m, each stem was measured individually but multiple stems from
the same root were counted as one tree. Within the research plots, trees were typically separated
into over- and understorey and the understorey was measured less intensively than the overstorey.
Understorey trees were not included in this study.

Stand basal area, G (m2 ha−1), of each plot was estimated by summation of individual tree
basal areas calculated from the diameter measurements. When trees were recorded in tally lists,
the mid-diameter of each class was used as an estimate of the diameter of all trees in that class.
Quadratic mean diameter, Dg (cm), was derived from the estimates of N and G.

Based on paired observations of diameter and height, height-diameter regressions were estimated
for each plot and measurement combination using a modified Näslund-equation (Näslund, 1936;
Johannsen, 2002):

h = 1.3 +
(

d

α+ β · d

)3

(2.1)

where d is the diameter at breast height, h is the total tree height and α and β are parameters to
be estimated. Subsequently, the equations were used to estimate the height of trees not measured.

Dominant height, defined as the mean height of the 100 thickest trees per hectare (H100), was
calculated for each plot and measurement occasion. In the few cases where stem numbers were

7



less than 100 per hectare, H100 was estimated as the mean height. Height corresponding to the
mean basal area tree (Hg) was calculated from the specific diameter-height equation by inserting
Dg. Table 2.1 presents a summary of the data.

2.3 Data ranges

The data included a wide range of different treatments in terms of initial spacing and subsequent
thinning practices, from unthinned control plots to heavily thinned plots. In the thinning experi-
ments, the treatments included A-, B-, C-, and D-grade thinnings, and in some cases even heavier
thinnings. Usually, the D-grade is thinned to a basal area of 50% of the unthinned control (A-grade).
The B- and C-grades are intermediate, dividing the interval between A-and D-grades equally. Some
plots were managed according to other thinning strategies, such as group or selection thinning, and
others were managed according to contemporary thinning strategies. The plots were all essentially
even-aged and mono-specific. The plots were generally thinned from below with the objective to
obtain a homogenous stand, which make the data less suited for modeling the growth of heteroge-
neous stands or stands thinned according to other principles. However, particularly for broadleaved
species, thinning from above does occur, particularly in young stands.

2.3.1 Beech

Stand ages ranged from 14 to 211 years, but the majority of measurement occasions were in stands
from 20 to 100 years old (Figure 2.2). The number of measurements in very young (<20 years) and
very old (>150 years) stands were limited.

For beech, measured stands were located mainly on relatively good sites in the eastern parts
of Denmark. Site classes ranged from 11.8 to 28.3 m (dominant height at age 50 years), but the
majority of stands were in site classes ranging from 20 to 24 m, which may be characterized as good
beech sites. Consequently, the models derived from this data may not perform particulary well on
relatively poor sites.

Treatments ranged from heavily thinned stands with basal areas of less than 10 m2ha−1 to
unthinned control plots with more than 50 m2ha−1. However, the vast majority of stands were
thinned moderately, having basal areas of 20-30 m2ha−1.
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Figure 2.2: Stand-level values of H100, G, Dg, and N for beech.
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2.3.2 Oak

Stand ages ranged from 11 to 184 years, but the majority of measurement occasions were in stands
aging from 25 to 100 years (Figure 2.3). The number of measurements in very young (<20 years)
and very old (>150 years) stands were relatively limited.

For oak, site classes ranged from 7.1 to 21.4 m (height at age 50 years), but the majority of
stands were in site classes ranging from 17 to 21 m, which may be characterized as good oak sites.
Consequently, the models derived from this data may not perform equally well on poor sites.

In accordance with common thinning practices for oak in Denmark, the majority of stands were
quite heavily thinned with basal areas ranging between 10 and 20 m2ha−1. Less intensive thinning
practices were applied in some experiments including some unthinned control plots with basal areas
of 20-40 m2ha−1.

2.3.3 Norway spruce

Stand ages of the Norway spruce data ranged from 14 to 104 years, but the majority of measurements
were carried out in 20 to 60 years old stands (Figure 2.4).

The data on Norway spruce represents a wide range of site classes from 8.7 – 27.6 m (dominant
height at age 50). Considering stand height growth the Norway spruce data falls into two groups:
1) stands of first generation Norway spruce on sandy, former heathlands or 2) stands on sandy
or clayey moraine or subsequent generations of Norway spruce on sandy, former heathlands. The
former group is characterized by a slow start due to frost and wind and and a subsequent poor
height growth.

Treatments ranged from heavily thinned stands with basal areas less than 15 m2ha−1 to un-
thinned control plots with more than 50 m2ha−1. However, the vast majority of stands were treated
moderately, with basal areas of 20-40 m2ha−1.

2.3.4 Sitka spruce

In sitka spruce stand ages ranged from 16 to 105 years, but the majority of measurements were
carried out in stands aging 25 to 50 years and only few measurements were carried out in stands
older than 75 years (Figure 2.5). Site classes ranged from 17.1 to 31.1 m (dominant height at age
50 years).

10



Figure 2.3: Stand-level values of H100, G, Dg, and N for oak.
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Figure 2.4: Stand-level values of H100, G, Dg, and N for Norway spruce.
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Figure 2.5: Stand-level values of H100, G, Dg, and N for Sitka spruce.
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Figure 2.6: Stand-level values of H100, G, Dg, and N for silver fir.

2.3.5 Silver fir

In silver fir stand ages ranged from 20 to 124 years, but the majority of measurements were carried
out in stands aging 25 to 50 years and only few measurements were carried out in stands older than
75 years (Figure 2.6). Site classes ranged from 17.1 to 31.1 m (dominant height at age 50 years).

2.3.6 Douglas fir

Stand ages ranged from 11 to 120 years, but the majority of measurement occasions were in stands
from 15 to 50 years old (Figure 2.7). The number of measurements in old (>75 years) stands was
relatively limited.
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Figure 2.7: Stand-level values of H100, G, Dg, and N for Douglas fir.

Site classes ranged from 18.3 to 32.7 m (dominant height at age 50 years). A relatively wide range
of basal areas is represented in the data (20-60 m2ha−1), but the majority of plots were thinned to
basal areas ranging from 20 to 40 m2ha−1.
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Table 2.1: Summary statistics of dominant height (H100), age (T), quadratic mean diameter (Dg),
stem number (N) and basal area (G). Please note that the number of measurements and the data
ranges in individual model estimation procedures may be less than the total number because of
differences in data requirements for the individual procedures.

Species Variable Unit n Mean Minimum Maximum Std. Dev.
Beech H100 m 1728 21.29 5.08 36.95 7.75

T years 2104 67.34 14 211 39.99
Dg cm 2104 29.74 0.50 90.57 19.00
N ha−1 2104 1286.61 0.49 24720.45 2181.47
G m2 ha−1 2104 20.35 0.21 73.58 9.30

Oak H100 m 1443 18.61 4.38 33.08 6.06
T years 1580 55.37 11 184 32.07
Dg cm 1580 28.29 2.19 91.88 18.09
N ha−1 1580 1604.84 13.89 35032.12 4224.62
G m2 ha−1 1580 15.87 4.46 41.18 5.45

Norway spruce H100 m 3100 17.53 6.28 29.82 4.79
T years 3710 44.67 14 104 18.16
Dg cm 3710 18.44 3.46 65.44 7.14
N ha−1 3710 1619.92 4.20 26503.70 1437.81
G m2 ha−1 3710 28.93 0.55 64.41 9.55

Sitka spruce H100 m 709 18.82 6.66 40.40 6.27
T years 793 39.75 16 105 13.37
Dg cm 793 21.63 4.93 66.43 9.40
N ha−1 793 1498.27 4.37 9513.52 1406.31
G m2 ha−1 793 34.24 0.18 80.10 13.00

Silver fir H100 m 179 18.84 6.47 36.54 6.16
T years 213 50.16 20 124 21.63
Dg cm 213 25.33 6.72 60.63 11.59
N ha−1 213 954.56 3.71 3921.82 696.81
G m2 ha−1 213 33.25 0.29 85.40 14.35

Douglas fir H100 m 345 20.23 6.89 42.02 7.62
T years 431 36.70 11 120 17.27
Dg cm 431 24.52 6.73 87.15 14.02
N ha−1 431 1096.79 8.51 5175.14 996.41
G m2 ha−1 431 27.37 0.63 62.66 9.30
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Chapter 3

Dynamic, stand-level growth models

Stand-level growth models are models in which the basic units are stand-level variables such as basal
area, stand volume, stem number, quadratic mean diameter, dominant height etc. Such models
represent simplistic representations of the forest stand, but also generally require little information
to predict forest growth. Thus, the general information produced by stand-level models are of
great value in forest practice as necessary information can easily be obtained in the forest to make
predictions of future yield, expected revenues, or expected demands for machine or man power, etc..

Static models of forest growth, such as yield tables or closed-form mathematical models, fail to
recognize that forest stands are dynamic systems, subject to sudden changes caused by for example
natural hazards or silvicultural interventions. When the actual thinning practice differs from that of
the equation or table, the model can no longer be expected to provide sensible predictions. Changing
market conditions, variations in management objectives, and natural hazards during the lifespan of
the stand frequently alter the applied silvicultural practice. Therefore, the importance of developing
dynamic models for forest management planning is evident.

In Vidar the main component are the dynamic stand-level growth models previously estimated
for beech (Nord-Larsen, 2006b), Norway spruce (Leary et al., 1999; Skovsgaard et al., 1999; Jo-
hannsen et al., 1999), oak (Johannsen, 1999), and Douglas fir (Christensen et al., 2003). Addi-
tionally, similar models have been estimated for Sitka spruce and European silver fir during the
development of Vidar. The dynamic aspect of the models is the main feature distinguishing this
software from other forest management tools as it allows the user maximum flexibility without the
need for prior assumptions often needed when using a static growth model (such as a yield table) in
a dynamic planning tool. The models have been developed over a number of years and collection of
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new data since the development of the individual models and demands for uniformity of the model
structures have required that most of the models have been re-estimated for application in Vidar.

3.1 Estimating dynamic stand-level growth models

The dynamic models in Vidar are based on the state-space approach. The hypothesis underlying
this approach is that the current state of the system reflects the past causes of the system and
constitutes all the information needed to predict it’s future behavior. For instance, using this
approach an even-aged beech stand may be characterized by the current basal area and dominant
height and predictions of future basal area growth does not depend on the timing and intensity of
thinnings leading to the current state of the system.

In the state-space model it is assumed that the n dimensional state vector at some point in time,
xxx(t), can be predicted by the transition function FFF of the state variable, xxx(t0), and a vector of input
variables, UUU at some other point in time (after Garćıa, 1994):

yyy(t) = ggg [xxx(t)]

xxx(t) = FFF [xxx(t0),UUU, t− t0] (3.1)

where the current output, yyyt is a function ggg of the current state. In other words, the state-space
approach predicts any future states of the system from the initial state, xxx(t0), through iteration. For
example, an initial observation of the two-dimensional state vector of height and basal area may be
used to predict basal area and height after one period. The new estimates of the two state variables
are then re-entered into the model to predict the state after one more period, and so forth. Abrupt
changes in for example basal area due to thinnings are handled by simulating the shifts in the state
vectors and are seen as shifts between different growth paths.

3.1.1 Stand-level model

The general model form for all species includes three equations for predicting dominant height
growth (∆H100), basal area growth (∆G), and mortality (∆N):
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∆H100,ij

∆t
= ajH

α1
100,ije

α2H100,ij+α3Gij + εH,ij (3.2.1)

∆G, ij
∆t

= (β01 + β02 · aj)Gβ1
ij e

β2Gij+β3H
β4
100,ij + FV [G]i+1,j + εG,ij (3.2.2)

∆Nij

∆t
= −γ1N

γ2
ij e

γ3
√
NijH100,ij + FV [N ]i+1,j + εN,ij (3.2.3)

where aj is a site-specific parameter estimated locally for the jth plot. The remaining parameters,
α1−α3, β01−β4, and γ1−γ3, are estimated globally. εH,ij ∼ N(0, σ2

H) and εG,ij ∼ N(0, σ2
G) are the

error terms of the ith measurement occasion on the jth plot. FV [G] and FV [G] (Forcing Value)
represents the shift in G and N caused by thinning.

For practical application of the stand model, aj must be estimated from a series of observations
of height and basal area. When the model is applied where beech has not been grown before or
when there are no sequential observations of stand variables the estimation cannot be carried out.
A preliminary study showed that a was highly correlated with the more traditional measure of site
quality, site index, defined as the dominant height at age 50. To allow flexible use of the model,
depending on the available data, we also estimated the stand level model where site specific effects
were substituted by a linear function of site index (S):

∆H100,ij

∆t
= (α01 + α02 · Sj)Hα1

100,ije
α2H100,ij+α3Gij + εH,ij (3.3.1)

∆Gij
∆t

= (β01 + β02 · Sj)Gβ1
ij e

β2Gij+β3H
β4
100,ij + FV [G]i+1,j + εG,ij (3.3.2)

∆Nij

∆t
= −γ1N

γ2
ij e

γ3
√
NijH100,ij + FV [N ]i+1,j + εN,ij (3.3.3)

The three equations in the stand-level models were estimated following the approach of McDill
and Amateis (1993). Following this approach, the estimation problem may be written as a series of
annual difference equations that increment stand height, stand basal area or stem numbers from some
initial state to the state at some later point in time, using the years between the two observations
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as the number of iterations. Considering height, the state at the end of the growth period may
be predicted from the state at the beginning of the growth period by a series of predicted annual
increments:

Ĥi+1,j = Hi,j + f(Hi,j , Gi,j) + εi+1,j (3.4.1)

Ĥi+2,j = Ĥi+1,j + f(Ĥi+1,j , Ĝi+1,j) + εi+2,j (3.4.2)
...

Ĥi+t,j = Ĥi+t−1,j + f(Ĥi+t−1,j , Ĝi+t−1,j) + εi+t,j , (3.4.j)

where f(Hi,j , Gi,j) is expressed in equation (3.2.1) and models annual height increment of the jth
plot at time i + t (t = 0, 1, 2, . . . , n). The parameters of the annual difference equation were then
estimated using a nonlinear least squares procedure (Marquardt in PROC MODEL, SAS 8.2 ) that
minimized the squared deviations of Ĥi+t,j from Hi+t,j .

The data used for this study represents a structure of repeated measurements on individual
plots. Failure to recognize that within-plot measurements are correlated may result in inefficient
estimates and underestimated standard errors when correlations are strong. When growth is viewed
as an incremental process where only current conditions influence current growth, the problems of
serial correlation are usually avoided (Garćıa, 1983; Seber and Wild, 1989). However, we explicitly
modeled the serial correlation by including a generalized formulation of the first-order autoregressive
model that accommodates the irregular spacing of measurements:

εij = ρ
tij−ti−1,j
m εi−1,j + uij (i = 1, 2, · · · ) , (3.5)

where εi is the error at the ith measurement, t is the time, ρm is the coefficient of correlation of the
mth equation and the ui’s are normally and independently distributed random errors.

3.2 Results

3.2.1 Beech

Parameter estimates of the system of equations (3.2.1) – (3.2.3) were all significant (P < 0.05)
except for β01 that was eliminated from the model. After reduction of the models all parameters were
significant. The correlation coefficient of the height model (ρH in equation (3.5)) was non-significant,
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indicating no correlation of height growth in subsequent growth periods. The correlation coefficient
of basal area growth (ρG) was highly significant, which may indicate that basal area growth in
subsequent periods was positively correlated or may be a consequence of model misspecification.

The reduced model system, using the site specific parameter a (equation (3.2.1) – (3.2.3)) ac-
counted for more than 98% of the observed variation of H100, G and N at the end of the growth
period (Table 3.1). Based on periodic annual increment (PAI), the height and basal area models
explained 33% and 72% of the total variation in annual growth, respectively, whereas the mortality
model explained 44% of the observed annual change in stem numbers. The relatively low coeffi-
cient of explanation of PAI is probably due to short measurement intervals, which decreases the
signal-to-noise ratio.

Parameter estimates of the model system using site index as the site specific variable (3.3.1) –
(3.3.3) were all significant (P < 0.05) except for α01 and β01 that were both eliminated from the
model. The use of site index as the site-specific variable resulted in only a slight decrease in precision
(Table 3.1).

Residuals of the stand growth model were evenly distributed around zero and revealed no ap-
parent irregularities when plotted against the predicted variables (Figure 3.1).

3.2.2 Oak

Parameter estimates of the system of equations (3.2.1) – (3.2.3) were all significant (P < 0.05) except
for α2. However, this parameter determines the shape of the growth path and was consequently
preserved in the final model. The correlation coefficient of the height growth model (ρH) was not
significant indicating that height growth in subsequent periods were not correlated. Conversely, the
correlation coefficient of the basal area growth model (ρG) was highly significant, which may indicate
that basal area growth in subsequent periods is positively correlated or may be a consequence of
model misspecification.

The reduced model system, using the site specific parameter a (equation (3.2.1) – (3.2.3)) ac-
counted for about 98% of the observed variation of H100, G and N at the end of the growth period
(Table 3.2). Based on PAI the height and basal area models explained 42% and 76% of the total
variation in annual growth, respectively, whereas the mortality model explained 37% of the observed
annual changes in stem numbers.

Parameter estimates of the model system using site index as the site specific variable (3.3.1)
– (3.3.3) were all significant (P < 0.05) except for α01. The use of site index as the site specific
variable resulted in only a slight decrease in precision (Table 3.2).
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Table 3.1: Parameter estimates for beech of the system of equations presented in equations (3.2.1) –
(3.2.3) and (3.3.1) – (3.3.3) along with their standard errors. R2 was calculated from the deviations
between predicted and observed values at the end of the growth periods.
Site parameter a Site index
Model Parameter Estimate Std. error R2 Estimate Std. error R2

H100 a 0.0235a 0.0074a 0.9914 . . 0.9913
α02 . . 2.089E-3 5.87E-4
α1 2.0325 0.1659 1.7623 0.1610
α2 -0.1854 0.0104 -0.1764 0.0101
α3 0.0117 2.03E-3 0.0151 1.96E-3
ρH 0.0206 0.1955 0.0247 0.1997

G β02 28.96437 8.7957 0.9912 0.0457 6.49E-3 0.9885
β1 0.5494 0.0625 0.6510 0.0664
β2 -0.0151 2.72E-3 -0.0166 3.15E-3
β3 -0.0381 0.0130 -0.1616 0.0451
β4 1.1086 0.0886 0.7705 0.0671
ρG 0.6246 0.0244 0.7555 0.0143

N γ1 1.1125E-3 1.82E-4 0.9871 1.0264E-3 1.70E-4 0.9873
γ2 1. . 1. .
γ3 0.0311 1.40E-3 0.0317 1.40E-3

aEstimated individually for each experiment, number represents a simple average.
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Figure 3.1: Residuals of the stand-level model for beech. Residuals are calculated as the difference
between observed and predicted periodic annual growth (PAI).
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Table 3.2: Parameter estimates for oak of the system of equations presented in equations (3.2.1) –
(3.2.3) and (3.3.1) – (3.3.3) along with their standard errors. R2 was calculated from the deviations
between predicted and observed values at the end of the growth periods.
Site parameter a Site index
Model Parameter Estimate Std. error R2 Estimate Std. error R2

H100 a 0.7579a 0.0100a 0.9883 . . 0.9880
α02 . . 3.3847E-3 1.24E-3
α1 1.5422 0.2198 1.7565 0.2221
α2 -0.1942 0.0152 -0.2105 0.0151
α3 4.8474E-3 3.35E-3 6.9736E-3 3.26-3
ρH 9.8799E-3 0.2381 9.4343E-3 0.2406

G β02 7.3517 2.8938 0.9848 0.02747 6.17E-3 0.9826
β1 1.0065 0.1236 1.0144 0.1243
β2 -0.0549 7.12E-3 -0.0524 7.20E-3
β3 -0.1984 0.0592 -0.1204 0.0342
β4 0.7926 0.0754 0.9290 0.0736
ρG 0.4565 0.0559 0.6072 0.0323

N γ1 7.3332E-5 3.60E-5 0.9798 8.7927E-5 4.30E-5 0.9801
γ2 1. . 1. .
γ3 0.0568 4.14E-3 0.0555 4.14E-3

aEstimated individually for each experiment, number represents a simple average.
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Figure 3.2: Residuals of the stand-level model for oak. Residuals are calculated as the difference
between observed and predicted periodic annual growth (PAI).

Residuals of the stand growth model for oak were evenly distributed around zero and revealed
no apparent irregularities when plotted against the predicted variables (Figure 3.2).

3.2.3 Norway spruce

Parameter estimates of the system of equations (3.2.1) – (3.2.3) were all significant (P < 0.05) except
for β01 and β3. The former was eliminated from the model, whereas the latter was considered
necessary for the model and was consequently not left out. After reduction of the models all
parameters were significant. The correlation coefficients of height (ρH) and basal area growth models
(ρG) were highly significant, which may indicate that height and basal area growth in subsequent
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periods was positively correlated or may be a consequence of model misspecification.
The reduced model system, using the site specific parameter a (equation (3.2.1) – (3.2.3)) ac-

counted for more than 97% of the observed variation of H100, G and N at the end of the growth
period (Table 3.3). Based on PAI the height and basal area models explained 28% and 60% of the
total variation in annual growth, respectively, whereas the mortality model explained 23% of the
observed annual change in stem numbers.

Parameter estimates of the model system using site index as the site specific variable (3.3.1) –
(3.3.3) were all significant (P < 0.05). The use of site index as the site specific variable resulted in
only a slight decrease in precision (Table 3.3).

Residuals of the stand growth model of height and basal area for Norway spruce were evenly
distributed around zero and revealed no apparent irregularities when plotted against the predicted
variables (Figure 3.3). However, predictions of stem numbers were clearly biased leading also to
biased estimates of quadratic mean diameter.

3.2.4 Sitka spruce

Many of the parameter estimates of the system of equations (3.2.1) – (3.2.3) not significant (includ-
ing most of the site-specific parameters) (P ≥ 0.05). The reason for the non-significant parameters
is probably that the signal-to-noise ratio is relatively large due to short time spans between measure-
ments. However. to maintain the general model structure we chose not to eliminate non-significant
parameters. The correlation coefficients of height (ρH) and basal area growth models (ρG) were both
significant. This may indicate that height growth in subsequent periods is negatively correlated, but
more likely it is an effect of measurement errors. Basal area growth on the other hand is probably
positively correlated in subsequent periods.

The model system, using the site specific parameter a (equation (3.2.1) – (3.2.3)) accounted
for more than 98% of the observed variation of H100, G and N at the end of the growth period
(Table 3.4). Based on PAI the height and basal area models explained 10% and 41% of the total
variation in annual growth, respectively.

As with the site specific parameter model, many parameter estimates of the model system using
site index as the site specific variable (3.3.1) – (3.3.3) were non-significant (P ≥ 0.05). The use of
site index as the site specific variable resulted in only a slight decrease in precision (Table 3.4).

Residuals of the stand growth model for Sitka spruce were evenly distributed around zero and
revealed no apparent tendencies across the predicted variables (Figure 3.4).
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Table 3.3: Parameter estimates for Norway spruce of the system of equations presented in equa-
tions (3.2.1) – (3.2.3) and (3.3.1) – (3.3.3) along with their standard errors. R2 was calculated from
the deviations between predicted and observed values at the end of the growth periods.
Site parameter a Site index
Model Parameter Estimate Std. error R2 Estimate Std. error R2

H100 a 0.0064a 0.0019a 0.9790 . . 0.9785
α01 . . -1.7229E-3 5.60E-4
α02 . . 4.0060E-4 1.24E-4
α1 2.9138 0.1971 3.0205 0.1866
α2 -0.2458 0.0132 -0.2541 0.0126
α3 -2.6906E-3 1.37E-3 -6.4661E-4 1.23E-3
ρH -0.0555 0.0964 -0.3763 0.0535

G β01 -0.0147 9.55E-3 0.9690 -0.0513 0.0164 0.9631
β02 35.0689 13.5287 0.0135 3.82E-3
β1 1.0608 0.1247 1.1248 0.1308
β2 -0.0437 4.36E-3 -0.0429 4.74E-3
β3 -0.0165 0.0135 -0.0185 0.0150
β4 1.2827 0.2281 1.2595 0.2255
ρG 0.5644 0.0321 0.7389 0.0144

N γ1 2.6697E-3 3.20E-4 0.9837 2.7832E-3 3.26E-4 0.9838
γ2 1. . 1. .
γ3 0.0182 1.28E-3 0.0176 1.24E-3

aEstimated individually for each experiment, number represents a simple average.
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Figure 3.3: Residuals of the stand-level model for Norway spruce. Residuals are calculated as the
difference between observed and predicted periodic annual growth (PAI).
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Table 3.4: Parameter estimates for Sitka spruce of the system of equations presented in equa-
tions (3.2.1) – (3.2.3) and (3.3.1) – (3.3.3) along with their standard errors. R2 was calculated from
the deviations between predicted and observed values at the end of the growth periods.
Site parameter a Site index
Model Parameter Estimate Std. error R2 Estimate Std. error R2

H100 a 0.0289 a 0.0210a 0.9825 . . 0.9815
α01 . . 4.8390E-3 5.31E-3
α02 . . 1.0496E-3 8.09E-4
α1 2.1681 0.4210 2.0415 0.4234
α2 -0.1622 0.0249 -0.1615 0.0249
α3 -3.9901E-3 2.23E-3 -1.3841E-3 2.12E-3
ρH -0.2369 0.0877 -0.2424 0.0864

G β01 -0.1244 0.0872 0.9809 -0.0411 0.0340 0.9741
β02 13.1947 12.5240 7.2996E-3 5.13E-3
β1 1.1845 0.2566 1.4101 0.2951
β2 -0.0344 6.96E-3 -0.0395 8.66E-3
β3 -9.9601E-3 0.0108 -0.0290 0.0281
β4 1.4340 0.2975 1.2075 0.2588
ρG 0.3311 0.0770 0.7895 0.0233

N γ1 2.0197E-4 1.82E-4 0.9963 1.4612E-4 1.26E-4 0.9964
γ2 1. . 1. .
γ3 0.0376 0.0102 0.0422 9.66E-3

aEstimated individually for each experiment, number represents a simple average.
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Figure 3.4: Residuals of the stand-level model for Sitka spruce. Residuals are calculated as the
difference between observed and predicted periodic annual growth (PAI).
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3.2.5 Silver fir

As for Sitka spruce, many of the parameter estimates of the system of equations (3.2.1) – (3.2.3)
not significant (including most of the site-specific parameters) (P ≥ 0.05). Similarly to the models
for Sitka spruce we chose to maintain the general model structure and hence not to eliminate non-
significant parameters. The correlation coefficient for height (ρH) was non-significant, indicating
that height growth in subsequent periods was uncorrelated. Oppositely, the correlation coefficient
of the basal area growth model (ρG) was significant which may indicate that basal area growth in
subsequent periods is positively correlated.

The model system, using the site specific parameter a (equation (3.2.1) – (3.2.3)) accounted
for more than 98% of the observed variation of H100, G and N at the end of the growth period
(Table 3.5). Based on PAI the height and basal area models explained 5% and 70% of the total
variation in annual growth, respectively. The small coefficient of explanation for the height growth
model is probably due to short time-span between measurements and the uncertainty related to
height measurements in general which causes a low signal-to-noise ratio.

As with the site specific parameter model, many parameter estimates of the model system using
site index as the site specific variable (3.3.1) – (3.3.3) were non-significant (P ≥ 0.05). The use of
site index as the site specific variable resulted in only a slight decrease in precision (Table 3.5).

Residuals of the stand growth model for silver fir were evenly distributed around zero and
revealed no apparent tendencies across the predicted variables (Figure 3.5).

3.2.6 Douglas fir

Estimation of the stand model for Douglas fir deviated from estimating the model for the other
tree species regarding the number of observations available for estimation. Also the range of site
conditions and treatments were more limited. This affected the parameter estimation in several
ways. Firstly, it was not possible to obtain convergence when including the mortality model. This
is possibly due to the lack of unthinned or lightly thinned stands. Hence, no mortality model
was estimated for Douglas fir. Secondly, although it was possible to obtain convergence using the
remaining models and parameters, many of the parameters were not significant. This led us to
fix the α1 and β1 parameters in equations (3.2.1) and (3.2.2) at 1 in accordance with the original
formulation of the model (Christensen et al., 2003).

After the reduction of the system of equations described above all parameter estimates of the
height growth model (3.2.1) were significant. In the basal area growth model (3.2.2), parameters β01
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Table 3.5: Parameter estimates for silver fir of the system of equations presented in equations (3.2.1)
– (3.2.3) and (3.3.1) – (3.3.3) along with their standard errors. R2 was calculated from the deviations
between predicted and observed values at the end of the growth periods.
Site parameter a Site index
Model Parameter Estimate Std. error R2 Estimate Std. error R2

H100 a 0.0225 a 0.0207a 0.9896 . . 0.9896
α01 . . -3.1727E-3 4.64E-3
α02 . . 2.5511E-3 2.28E-3
α1 2.0251 0.5821 1.7164 0.5064
α2 -0.1607 0.0334 -0.1493 0.0276
α3 3.3279E-4 5.07E-3 2.4291E-4 4.08E-3
ρH . . -0.2022 0.5083

G β01 4.7081E-3 0.1229 0.9828 5.7007E-3 0.0836 0.9784
β02 62.5248 77.5825 0.0689 0.0465
β1 0.1512 0.2990 0.3191 0.3181
β2 4.9951E-3 9.20E-3 -2.3131E-3 9.06E-3
β3 -2.0296E-3 3.11E-3 -8.2618E-3 0.0122
β4 2.0072 0.4320 1.6346 0.4013
ρG . . 0.8672 0.0359

N γ1 7.1174E-4 4.94E-4 0.9960 8.5411E-4 5.60E-4 0.9962
γ2 1. . 1. .
γ3 0.0315 0.0111 0.0280 0.0105

aEstimated individually for each experiment, number represents a simple average.
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Figure 3.5: Residuals of the stand-level model for silver fir. Residuals are calculated as the difference
between observed and predicted periodic annual growth (PAI).
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and β02 were insignificant (P > 0.05), which suggests no site specific effects on basal area growth.
This is possibly due to the limited variation in growth conditions reflected in the data, and should
not be interpreted as a general feature of Douglas fir in Denmark. When the model was estimated
after removing β01, β02 became significant, but this resulted in a 10% increase in RMSE. Hence, we
used the original model formulation, accepting that some parameters were insignificant as a result
of the limited number of observations.

The correlation coefficient of the height growth model (ρH) was not significant indicating that
height growth in subsequent periods were not correlated. Conversely, the correlation coefficient of
the basal area growth model (ρG) was highly significant. This may indicate that basal area growth
in subsequent periods is positively correlated or may be a consequence of model misspecification.

The reduced model system, using the site-specific parameter a (equation (3.2.1) – (3.2.3)) ac-
counted for about 97% of the observed variation of H100 and G at the end of the growth period
(Table 3.6).

Parameter estimates of the model system using site index as the site-specific variable (3.3.1)
– (3.3.2) were all significant (P < 0.05) except for α01. The use of site index as the site-specific
variable resulted in only a slight decrease in precision (Table 3.6).
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Table 3.6: Parameter estimates for Douglas fir of the system of equations presented in equa-
tions (3.2.1) – (3.2.2) and (3.3.1) – (3.3.2) along with their standard errors. R2 was calculated
from the deviations between predicted and observed values at the end of the growth periods.
Site parameter a Site index
Model Parameter Estimate Std. error R2 Estimate Std. error R2

H100 a 0.1674a 0.0215a 0.9881 . . 0.9870
α01 . . 0.0889 0.0700
α02 . . 2.4227E-3 2.00E-3
α1 1.3102 0.3604 1.0194 0.3641
α2 -0.1260 0.0201 -0.1141 0.0205
α3 0.0119 4.29E-3 0.0164 4.21E-3
ρH . . -0.03429 0.4960

G β01 -7.5318E-4 0.0802 0.9823 1.2289 0.8830 0.9759
β02 4.0649 3.5554 0.0404 0.0300
β1 0.7504 0.2538 0.03027 0.3031
β2 -9.9993E-3 8.63E-3 0.0143 0.0104
β3 -6.7715E-3 4.86E-3 -0.0126 9.67E-3
β4 1.5605 0.1940 1.3966 0.2048
ρG . . 0.7028 0.0479

N γ1 5.8784E-4 1.69E-3 0.9796 5.3639E-4 1.56E-3 0.9797
γ2 1. . 1. .
γ3 0.0308 0.0467 0.0322 0.0470

aEstimated individually for each experiment, number represents a simple average.
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Figure 3.6: Residuals of the stand-level model for Douglas fir. Residuals are calculated as the
difference between observed and predicted periodic annual growth (PAI).
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Chapter 4

Site index models

Some assessment of site quality is required for making meaningful forecasts of forest growth and
yield and a vast number of studies have been devoted to the characterization of site quality. One of
the most common methods for assessing site quality in forest practice is to relate a specific height-
age observation to a standardized set of age-height growth patterns called site curves (Danish:
”bonitetskurver”). The expected height (site index) at a specific age (base-age) expresses the site
quality.

Site index models are mathematical expressions of the expected height-age development given a
specific height-age observation. Such models are crucial in Vidar as they are used in the dynamic
models to express differences in site quality. Site index models were developed in relation to the
development of dynamic models for beech (Nord-Larsen, 2006a) but had not previously been devel-
oped for the other tree species in Vidar. This chapter documents the development of site index
models for beech, Norway spruce, oak, and Douglas fir.

4.1 Developing base-age invariant site index models

Apart from early attempts with graphical smoothing of the height-age relationship, most recent
work on site index curves involves fitting of functions of the general form H = f(t, S,βββ) where t is
some age, S is the height at base age and βββ is a vector of parameters. These functions predict height
as a function of age and site index. Such functions are often called static or base-age specific models,
because they predict height as a function of age and a site index at a fixed base-age obtained from
a direct height measurement.
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When fitting base-age specific site curves to repeated measurements on permanent sample plots,
assessment of base-age and site index may be a problem because such data rarely have height
measurements at an age common to all plots or at the desired base age. Hence, heights at the
desired base age must be obtained from inter- or even extrapolations for all plots not measured at
the chosen base age. A different type of models unequivocally defines the individual site curves
from any age-height point on the curve. Such base-age invariant models evade the need for prior
assessment of site index as height at base age is expressed explicitly by any height-age observation
on the site curve. Hence, site curves may be estimated from permanent sample plot data without
any inter- or extrapolations to obtain site index.

Base-age invariant methods fit the three-dimensional surface (age, height and site index) in a
manner that directly estimates the site-specific effects as parameters from the fitting procedure.
Development of base-age invariant equations was first done by Bailey and Clutter (1974) using the
algebraic difference approach ( ADA). The method was subsequently used in a number of studies (e.g.
Pienaar and Shiver, 1980; Amateis and Burkhart, 1985; Lenhart et al., 1986; Furnival et al., 1990)
and was recently extended to a generalized form (GADA) by Cieszewski (2001, 2003); Cieszewski
and Bailey (2000).

The development of site index models using GADA for beech is described by Nord-Larsen
(2006a,b) and includes the following steps:

1. Select the basic equation form. This step is often performed using base-age specific methods
to evaluate how well the equation represents the data.

2. Identify the site-specific parameter in the basic equation. Although Bailey and Clutter (1974)
in their original formulation of the ADA describe models where site index depends solely on
one parameter, any number may be specified in the GADA.

3. Generalize the site-specific parameters in the equation as functions of X, where X is an
unknown measure of site quality. This step separates the GADA from ADA since introducing
a function for the site-specific parameter allows it to vary across sites.

4. Solve for X and substitute for the independent variables, t and H, the initial conditions, t0
and H0. The X in the equation developed in step 3 is finally replaced by this solution for X.

Among the models tested the best fit and most desirable properties (according to the list of nine
characteristics presented by Goelz and Burk (1992)) was obtained by the three-parameter GADA
age-height growth model derived by Cieszewski (2001, Equation (21)):
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H = H0
tβ1(tβ1

0 R+ β2)

tβ1
0 (tβ1R+ β2)

(4.1)

where:

R = Z0 +
(
Z2

0 +
2β2H0

tβ1
0

)0.5

Z0 = H0 − β3

where H0 is the observed stand height at age t0 and H is the estimated stand height at age t. β1,
β2, and β3 are model parameters. The equation is highly flexible and holds a number of desirable
properties such as variable asymptotes and polymorphism. The derivation of this equation is not
shown here and readers are referred to the original paper.

Equation (4.1) was solved using nonlinear least squares techniques. The site-specific parameter
(H0) was estimated locally for each experiment using an indicator variable method while the other
parameters were simultaneously estimated globally. The properties of the model was assessed from
a graphical analysis of curve shapes and residuals.

4.2 Results

4.2.1 Beech

Fitted site curves for beech generally represented the observed age-height patterns well across the
entire range of site qualities (Figure 4.1). Parameter estimates are presented in Table 4.1. In the
original paper, site curves for beech were estimated using both a base-age specific methodology and
correcting for serial correlation. For Vidar we used only the base-age specific estimation.

Fit statistics (Table 4.1) demonstrate that the site index equations represent the data well and
that the model explains more than 99% of the the variation in dominant height. Residual plots
(Figure 4.2) also show no severe trends across stand ages, predicted heights or for individual plots.

4.2.2 Oak

Compared to beech the age-height data for oak is somewhat less differentiated in terms of site
index (Figure 4.3), although the observed range of site indices the site curves seem to represent the
observed patterns well. For oak the parameter estimate of β2 caused asymptotic height to decline
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Figure 4.1: Site index curves for beech along with observed height-age patterns. Numbers refers to
height at base age 50 years.

Table 4.1: Parameter estimates for the base-age invariant site equation for beech based on equa-
tion (4.1) (Cieszewski, 2001). The table includes fit statistics such as root mean square error
(RMSE), R-square and average absolute bias (AAB).

Equation Para. Estimate Std. Err. t-stat RMSE R-square AAB
(4.1) β1 1.7644 0.030 58.85 0.7367 0.991 0.501

β2 3472.7999 2196.2 1.71
β3 36.8037 1.304 26.97
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Figure 4.2: Residuals plotted against stand age and predicted dominant height for beech.
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Figure 4.3: Site index curves for oak along with observed height-age patterns. Numbers refers to
height at base age 50 years.

for high site index values and the model collapsed. In this case β2 was arbitrarily restricted to 1,
resulting in an increase in RMSE of 0.1 %. The restriction of β2 causes the site curves to have
identical asymptotes, but different shapes. Parameter estimates are presented in Table 4.2.

The site equations explain 99% of the variation of dominant height. The overall model fit is
illustrated by the plots of residuals against stand age and predicted height (Figure 4.4). The plots
show no apparent irregularities of the model across stand ages and predicted dominant heights or
for individual plots.

4.2.3 Norway spruce

The site curves for Norway spruce generally represented the observed age-height patterns well across
the entire range of site qualities (Figure 4.5). Parameter estimates are presented in Table 4.3.
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Table 4.2: Parameter estimates for the base-age invariant site equation for oak based on equa-
tion (4.1) (Cieszewski, 2001). The table includes fit statistics such as root mean square error
(RMSE), R-square and average absolute bias (AAB).

Equation Para. Estimate Std. Err. t-stat RMSE R-square AAB
(4.1) β1 1.6277 0.0333 45.10 0.6158 0.990 0.410

β2 1.0000 . .
β3 31.9667 0.4187 45.10

Figure 4.4: Residuals plotted against stand age and predicted dominant height for oak.
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Figure 4.5: Site index curves for Norway spruce along with observed height-age patterns. Numbers
refers to height at base age 50 years.
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Table 4.3: Parameter estimates for the base-age invariant site equation for Norway spruce based on
equation (4.1) (Cieszewski, 2001). The table includes fit statistics such as root mean square error
(RMSE), R-square and average absolute bias (AAB).

Equation Para. Estimate Std. Err. t-stat RMSE R-square AAB
(4.1) β1 2.0323 0.0303 65.55 0.6691 0.982 0.495

β2 6448.8721 2231.0 2.44
β3 32.5165 0.9488 36.04

Table 4.4: Parameter estimates for the base-age invariant site equation for Sitka spruce based on
equation (4.1) (Cieszewski, 2001). The table includes fit statistics such as root mean square error
(RMSE), R-square and average absolute bias (AAB).

Equation Para. Estimate Std. Err. t-stat RMSE R-square AAB
(4.1) β1 2.1538 0.0872 24.02 0.807 0.984 0.547

β2 -2870.2666 7641.6 -0.41
β3 38.8609 3.3895 11.60

Fit statistics show that the model represents the data well, although it explains slightly less of
the variation in dominant height (∼98%) compared to the models for beech and oak (∼99%). It
seems that height growth at the good sites may be more persistent in old stands than predicted
by the model, but no data is available to substantiate this finding. Nevertheless, the site equation
seems to adequately predict dominant height growth within the common range of stand ages.

4.2.4 Sitka spruce

Sitka spruce shows a very rapid height growth compared to the other species. Nevertheless, the
chosen site equation seems to represent the observed age-height pattern satisfactory (Figure 4.7).
Parameter estimates are provided in Table 4.4.

The site equations for Sitka spruce explain 98% of the observed variation in dominant height and
the residuals show no obvious trends across stand ages and predicted dominant heights (Figure 4.8).

4.2.5 Silver fir

The height growth pattern of silver fir is highly differentiated between good and poor sites. Nev-
ertheless, the chosen site equation seems to represent the observed age-height pattern satisfactory
(Figure 4.9). Parameter estimates are provided in Table 4.5.
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Figure 4.6: Residuals plotted against stand age and predicted dominant height for Norway spruce.

Table 4.5: Parameter estimates for the base-age invariant site equation for silver fir based on equa-
tion (4.1) (Cieszewski, 2001). The table includes fit statistics such as root mean square error
(RMSE), R-square and average absolute bias (AAB).

Equation Para. Estimate Std. Err. t-stat RMSE R-square AAB
(4.1) β1 2.1708 0.0740 28.78 0.7084 0.989 0.475

β2 140562.7517 40690.1 3.69
β3 20.4927 4.1343 4.71
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Figure 4.7: Site index curves for Sitka spruce along with observed height-age patterns. Numbers
refers to height at base age 50 years.
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Figure 4.8: Residuals plotted against stand age and predicted dominant height for Sitka spruce.
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Figure 4.9: Site index curves for silver fir along with observed height-age patterns. Numbers refers
to height at base age 50 years.
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Figure 4.10: Residuals plotted against stand age and predicted dominant height for silver fir.

The site equations for silver fir explain more than 98% of the observed variation in dominant
height and the residuals show no obvious trends across stand ages and predicted dominant heights
(Figure 4.10).

4.2.6 Douglas fir

Douglas fir shows a very rapid height growth compared to the other species. Nevertheless, the chosen
site equation seems to represent the observed age-height patterns satisfactorily (Figure 4.11). As
For oak the parameter estimate of β2 caused asymptotic height to decline for high site index values
and the model collapsed. In this case β2 was arbitrarily restricted to 1, resulting in an increase in
RMSE of 0.3 %. Parameter estimates are provided in Table 4.6.

The site equations for Douglas fir explain close to 98% of the observed variation in dominant
height and the residuals show no obvious trends across stand ages and predicted dominant heights
(Figure 4.12).

50



Figure 4.11: Site index curves for Douglas fir along with observed height-age patterns. Numbers
refers to height at base age 50 years.

Table 4.6: Parameter estimates for the base-age invariant site equation for Douglas fir based on
equation (4.1) (Cieszewski, 2001). The table includes fit statistics such as root mean square error
(RMSE), R-square and average absolute bias (AAB).

Equation Para. Estimate Std. Err. t-stat RMSE R-square AAB
(4.1) β1 1.8000 0.0766 34.65 0.8403 0.989 0.844

β2 1.0000 . .
β3 44.4553 2.2188 0.74
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Figure 4.12: Residuals plotted against stand age and predicted dominant height for Douglas fir.
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Chapter 5

Soil properties and growth

Site-specific parameters such as a0 in equation (3.2.1)–(3.2.2) or site index are suited for situa-
tions where knowledge on growth can be obtained from the present or previous crops. However, in
situations where the particular species has not previously been grown on the site, such measures
cannot be obtained and therefore cannot be used in estimating growth. Other measures such as cli-
mate (precipitation, temperature), geography (soil type, elevation, parent material), or soil nutrient
content have been suggested by a number of authors (Johannsen, 1999; Callesen, 2003).

Based on soil properties (fractions of clay, silt, fine sand, and coarse sand) we modeled the
relationship between the site-specific parameter of the stand growth model (a0 in equation (3.2.1)–
(3.2.2)) and the fraction of coarse sand (in %) using a power function:

a0,i = α1 · (1 + CSi)α2 + εi (5.1)

where a0,i is the site-specific parameter of the ith site, CS is the coarse sand percentage, and ε is
the random error.

5.1 Results

In general a negative relationship between coarse sand percentage and the site-specific parameter
was observed (Figure 5.1) although the relation was generally weak (Table 5.1). Especially for beech
and Sitka spruce the correlation between the two variables was so small that it makes little sense to
estimate the site-specific parameter based on soil properties alone.
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Figure 5.1: Relation between the site-specific parameter a0 in equation (3.2.1)–(3.2.2) and the coarse
sand percentage for beech, Norway spruce, oak, Sitka spruce, Douglas fir, and silver fir.
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Table 5.1: Parameter estimates for the relationship between coarse sand percentage and the site-
specific parameter a0 in equation (3.2.1)–(3.2.2).

Species Parameter R-square
α1 α2

Beech 0.02348 -0.00043 0.000
Oak 0.13506 -0.12179 0.092
Norway spruce 0.01756 -0.14726 0.144
Sitka spruce 0.02564 0.01563 0.018
Silver fir 0.04474 -0.12012 0.359
Douglas fir 0.14411 -0.10136 0.378
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Chapter 6

Relationship between height

corresponding to quadratic mean

diameter (Hg) and dominant height

(H100)

Numerous variables may be used to characterize specific forest stands (basal area, stem numbers,
average diameter, diameter distribution etc.), but few are so commonly used as stand height. Stand
height is however not unequivocally defined as different definitions have proven adequate for different
situations. A simple but rarely used definition of stand height would be a simple average of the
tree heights. More commonly used for example in the common Danish yield tables is the height
corresponding to quadratic mean diameter (Hg). This height is most commonly found by developing
a diameter/height regression and subsequently calculating the height based on the quadratic mean
diameter (Dg). The popularity of Hg is due to its relation to stand volume. A related measure of
stand height is the basal area weighted mean height (Lorey’s height, HL).

Another commonly used measure of stand height is dominant height, often measured as the
average height of the 100 thickest trees per hectare (H100). The popularity of this measure of stand
height is due to its properties as an indicator of site quality as it is less affected by thinning than
for example Hg (except in the case of high thinning).

H100 has been used in most of the models underlying Vidar (the dynamic growth models and
site equations as mentioned above). However, as we wish to provide the user of Vidar with the
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Figure 6.1: Illustration of linear regression.

highest possible degree of flexibility and to enable comparison with the existing yield tables we need
to develop functions that transform Hg to H100 and vice versa. This chapter shows the development
of such relationships.

6.1 Modeling the relationship between Hg and H100

Development of the relation between Hg and H100 may seem as a relatively simple task as the relation
between the two is both very strong and seemingly close to linear (figures 6.3, 6.5, 6.7, 6.9, 6.11),
and 6.13.

Using linear regression, the regression line is found as the one that minimizes the squared vertical
distances between the observed and predicted values (a in Figure 6.1). However, this is not the
same as minimizing the squared horizontal distances between observed and predicted values (a in
Figure 6.1). Hence, prediction of Y from an observation of X based on the linear regression illustrated
in Figure 6.1 is unbiased, but rearranging the same regression to predict X given a value of Y is
biased.

The problem of biased prediction when alternating between using Hg and H100 as the independent
variable is highly relevant to the problem of developing a relationship between Hg and H100, as we
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Figure 6.2: Illustration of linear regression.

are interested in predicting both Hg from H100 and vice versa. One way to deal with this problem
is to develop separate regressions for predicting Hg from H100 and for predicting H100 from Hg.
However, it is both unpractical as well as problematic because predicting Hg from H100 and vice
versa will not yield the same concordant results. An alternative to this approach is to use orthogonal
regression illustrated in Figure 6.2. Here the squared orthogonal distances between observations and
the regression line are minimized. As this distance is the same wether the dependent variable is Hg

or H100, the relationship works equally well in both cases.
The orthogonal distance (dist) between a point P (x1, y1) and the line l with the equation y =

ax+ b is calculated by:

dist(P, l) =
|ax1 + b− y1|√

a2 + 1
(6.1)

Using the linear relationship between Hg and H100:

H100,i = a ·Hg,i + b+ εi (6.2)

we used the NLP procedure in SAS to minimize the squared orthogonal distance between (Hg, H100)-
observations and the regression line:
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Table 6.1: Parameter estimates of the relation between Hg and H100 for beech, Norway spruce, oak,
and Douglas fir.

Species a b
Beech 0.955129 1.746100
Oak 0.931169 1.898170
Norway spruce 0.980288 1.963037
Sitka spruce 0.968923 2.013658
Silver fir 0.944459 2.333214
Douglas fir 0.976051 1.592454

min
n∑
i=1

(
|axi + b− yi|√

a2 + 1

)2

(6.3)

where xi and yi are the ith observation of Hg and H100 respectively.

6.2 Results

Parameter estimates of the regression H100 = a · Hg + b are provided in Table 6.1. Comments on
the individual regressions are provided in the species-wise subsections below. A general observation
is that the slopes are a little less than one, indicating that H100 is larger than Hg in young stands
and that this difference is reduced through the life of the stand. The intercept is 1.5 – 2 m which is
the difference between H100 and Hg for a hypothetical stand where Hg = 0.

6.2.1 Beech

The relation between Hg and H100 for beech was close to linear. The slope was, as expected close to
1 and the intercept was 1.7 m. These properties are in accordance with what can be observed from
a graphical presentation of the relationship (Figure 6.3).

Residual plots of both Hg and H100 show that deviations of the predicted values from the observed
are small (Figure 6.4). Note that the two plots are merely mirror images as predicted values are
calculated by rearranging equation (6.2). RMSE for the prediction of H100 was 0.731 m and 0.765
m for the prediction of Hg.
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Figure 6.3: Hg vs. H100 for beech.

Figure 6.4: Residual plots of Hg and H100 for beech respectively.
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Figure 6.5: Hg vs. H100 for oak.

6.2.2 Oak

The relation between Hg and H100 for oak was close to linear. The slope was, as expected close to
1 and the intercept was 1.9 m. These properties are in accordance with what can be observed from
a graphical presentation of the relationship (Figure 6.5).

Some systematic deviations from the model for oak was observed in old stands. As we minimized
the squared deviations, the one-sided deviations affected the regression line which seems to have
created a slight bias in the predictions (Figure 6.6). Despite the slight bias, RMSE for H100 (0.549
m) and Hg (0.590 m) were relatively small.

6.2.3 Norway spruce

The relation between Hg and H100 for Norway spruce was close to linear. The slope was, as expected
close to 1 and the intercept was 2.0 m. These properties are in accordance with what can be observed
from a graphical presentation of the relationship (Figure 6.7).

Residuals of both Hg and H100 are generally small (Figure 6.8). RMSE for the prediction of H100

was 0.743 m and 0.758 m for the prediction of Hg.

6.2.4 Sitka spruce

The was a very close to linear relationship between Hg and H100 for Sitka spruce (Figure 6.9). As
with the other species the slope was, as expected, close to 1 and the intercept was 2.0 m.
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Figure 6.6: Relation between Hg and H100 for oak.

Figure 6.7: Hg vs. H100 for Norway spruce.
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Figure 6.8: Relation between Hg and H100 for Norway spruce.

Figure 6.9: Relation between Hg and H100 for Sitka spruce.
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Figure 6.10: Relation between Hg and H100 for Sitka spruce.

Residuals of the relations are generally small with a RMSE for H100 and Hg of 0.768 and 0.793
m, respectively.

6.2.5 Silver fir

The was also for silver fir a very close to linear relationship between Hg and H100 (Figure 6.11). As
with the other species the slope was, as expected close to 1 and the intercept was 2.3 m.

Residuals of the relations are generally small with a RMSE for H100 and Hg of 0.541 and 0.573
m, respectively (Figure 6.12).

6.2.6 Douglas fir

There was a very close to linear relationship between Hg and H100 for Douglas fir (Figure 6.13). As
with the other species the slope was, as expected close to 1 and the intercept was 1.6 m.

Residuals of the relations are generally small with a RMSE for H100 and Hg of 0.562 and 0.576
m, respectively.

64



Figure 6.11: Relation between Hg and H100 for silver fir.

Figure 6.12: Relation between Hg and H100 for silver fir.
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Figure 6.13: Relation between Hg and H100 for Douglas fir.

Figure 6.14: Relation between Hg and H100 for Douglas fir.
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Chapter 7

Derivation of the relationship between

harvest quotients for diameter and

height

In most yield tables and other growth models it is assumed that stand height is unaffected by
thinnings. This assumption is underlying the concept of site index and is generally believed to be
valid in most situations. However, in Vidar, the user is able to choose a wide range of thinning
regimes. In this situation, the user may specify thinning regimes that certainly does affect stand
height, such as high thinning, crown thinning, or heavy thinnings from below. Hence, the programme
must be equipped with a module expressing the effect of thinning on stand height.

7.1 Modeling the relationship between QD and QH

We chose to model the effect of thinnings on stand height as the effect on the quotient of stand
height before and after thinning:

QH =
Hg,3

Hg,1
, (7.1)

where suffixes 1 and 3 refer to the stand height before and after thinning respectively. The effect
of thinning on stand height was modeled as a function of the thinning quotient that expresses the
relation between stand diameter after and before thinning. In Vidar the thinning quotient is defined

67



as:

QD =
Dg,3

Dg,1
, (7.2)

where suffix 1 and 3 refer to the diameter before and after thinning, respectively.
A graphical inspection of QH/QD-plots showed that the relation is increasing and has an inflexion

point at (1,1) (Figures 7.1, 7.3, 7.2, and 7.6). Such relation may adequately be described by a third
order polynomial, although this function does not have a well-defined inflexion point. We therefore
restricted the polynomial to have inflexion point at (1,1):

QH = 1− b− c+ (c/3) + b ·QD + c ·Q2
D − (c/3) ·Q3

D, (7.3)

where:

QH =
Hg,3

Hg,1
and QD =

Dg,3

Dg,1

We estimated the regression coefficients using multiple regression analysis.

7.2 Results

The selected functional form generally fitted the data well for all species (Table 7.1). A general
observation is that the observed range of QD is relatively narrow (∼ 0.8 − 1.2) and although the
model may provide a good description inside this range, extrapolations using the model may be
dubious.

Confidence intervals around the predicted regression line are relatively narrow for all species
(Figures 7.1, 7.3, 7.2, 7.6, 7.4, and 7.5). It should however be noticed that residuals are far from
homogeneous and thus that model inferences such as confidence intervals may not hold.
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Table 7.1: Parameter estimates of the relationship between QH and QD for European beech, oak,
Norway spruce, Sitka spruce, European silver fir, and Douglas fir. Regression coefficients are based
on equation (7.3).

Species Regression coefficients Range
b c QD QH

Beech 3.0975 -2.8248 0.28–1.25 0.45–1.12
Oak 0.2983 0.0182 0.94–1.49 0.97–1.16
Norway spruce 3.1025 -2.6356 0.59–1.33 0.81–1.19
Sitka spruce 5.9506 -5.5872 0.82–1.36 0.92–1.22
Silver fir 11.7545 -11.4020 0.97–1.28 0.99–1.11
Douglas fir 10.4952 -10.1946 0.93–1.20 0.97–1.09

Figure 7.1: Relation between QD and QH for beech.
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Figure 7.2: Relation between QD and QH for oak.

Figure 7.3: Relation between QD and QH for Norway spruce.
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Figure 7.4: Relation between QD and QH for Sitka spruce.

Figure 7.5: Relation between QD and QH for silver fir.
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Figure 7.6: Relation between QD and QH for Douglas fir.
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