Vegetation type is an important predictor of the arctic summer land surface energy budget

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

  • Fulltext

    Final published version, 2.03 MB, PDF document

  • Jacqueline Oehri
  • Gabriela Schaepman-Strub
  • Jin Soo Kim
  • Raleigh Grysko
  • Heather Kropp
  • Inge Grünberg
  • Vitalii Zemlianskii
  • Oliver Sonnentag
  • Eugénie S. Euskirchen
  • Merin Reji Chacko
  • Giovanni Muscari
  • Peter D. Blanken
  • Joshua F. Dean
  • Alcide di Sarra
  • Richard J. Harding
  • Ireneusz Sobota
  • Lars Kutzbach
  • Elena Plekhanova
  • Aku Riihelä
  • Julia Boike
  • Nathaniel B. Miller
  • Jason Beringer
  • Efrén López-Blanco
  • Paul C. Stoy
  • Ryan C. Sullivan
  • Marek Kejna
  • Frans Jan W. Parmentier
  • John A. Gamon
  • Mikhail Mastepanov
  • Christian Wille
  • Marcin Jackowicz-Korczynski
  • Dirk N. Karger
  • William L. Quinton
  • Jaakko Putkonen
  • Dirk van As
  • Torben R. Christensen
  • Maria Z. Hakuba
  • Robert S. Stone
  • Stefan Metzger
  • Baptiste Vandecrux
  • Gerald V. Frost
  • Martin Wild
  • Daniela Meloni
  • Florent Domine
  • Mariska te Beest
  • Torsten Sachs
  • Aram Kalhori
  • Adrian V. Rocha
  • Scott N. Williamson
  • Sara Morris
  • Adam L. Atchley
  • Richard Essery
  • Benjamin R. K. Runkle
  • David Holl
  • Laura D. Riihimaki
  • Hiroki Iwata
  • Edward A.G. Schuur
  • Christopher J. Cox
  • Andrey A. Grachev
  • Joseph P. McFadden
  • Robert S. Fausto
  • Mathias Göckede
  • Masahito Ueyama
  • Norbert Pirk
  • Gijs de Boer
  • M. Syndonia Bret-Harte
  • Matti Leppäranta
  • Konrad Steffen
  • Atsumu Ohmura
  • Colin W. Edgar
  • Johan Olofsson
  • Scott D. Chambers

Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm−2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.

Original languageEnglish
Article number6379
JournalNature Communications
Volume13
Number of pages12
ISSN2041-1723
DOIs
Publication statusPublished - 2022

Bibliographical note

Publisher Copyright:
© 2022, The Author(s).

ID: 326833643