Testing sequence stratigraphic models by drilling Miocene foresets on the New Jersey shallow shelf

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

  • Kenneth G. Miller
  • Gregory S. Mountain
  • James V. Browning
  • Miriam E. Katz
  • Donald Monteverde
  • Peter J. Sugarman
  • Hisao Ando
  • Maria A. Bassetti
  • Bjerrum, Christian J.
  • David Hodgson
  • Stephen Hesselbo
  • Sarp Karakaya
  • Jean-Noel Proust
  • Marina Rabineau
We present seismic, core, log, and chronologic data on three early to middle Miocene sequences (m5.8, m5.4, and m5.2; ca. 20-14.6 Ma) sampled across a transect of seismic clinothems (prograding sigmoidal sequences) in topset, foreset, and bottomset locations beneath the New Jersey shallow continental shelf (Integrated Ocean Drilling Program Expedition 313, Sites M27-M29). We recognize stratal surfaces and systems tracts by integrating seismic stratigraphy, litho-facies successions, gamma logs, and foraminiferal paleodepth trends. Our interpretations of systems tracts, particularly in the foresets where the sequences are thickest, allow us to test sequence stratigraphic models. Landward of the clinoform rollover, topsets consist of nearshore deposits above merged transgressive surfaces (TS) and sequence boundaries overlain by deepening-and fining-upward transgressive systems tracts (TST) and coarsening- and shallowing-upward highstand systems tracts (HST). Drilling through the foresets yields thin (<18 m thick) lowstand systems tracts (LST), thin (<26 m) TST, and thick HST (15-90 m). This contrasts with previously published seismic stratigraphic predictions of thick LST and thin to absent TST. Both HST and LST show regressive patterns in the cores. Falling stage systems tracts (FSST) are tentatively recognized by seismic downstepping, although it is possible that these are truncated HST; in either case, these seismic geometries consist of uniform sands in the cores with a blocky gamma log pattern. Parasequence boundaries (flooding surfaces) are recognized in LST, TST, and HST. TS are recognized as an upsection change from coarsening-to fining-upward successions. We find little evidence for correlative conformities; even in the foresets, where sequences are thickest, there is evidence of erosion and hiatuses associated with sequence boundaries. Sequence m5.8 appears to be a single million-year-scale sequence, but sequence m5.4 is a composite of 3 similar to 100-k.y.-scale sequences. Sequence m5.2 may also be a composite sequence, although our resolution is insufficient to demonstrate this. We do not resolve the issue of fractal versus hierarchical order, but our data are consistent with arrangement into orders based on Milankovitch forcing on eccentricity (2.4 m.y., 405 and 100 k.y. cycles) and obliquity scales (1.2 m.y. and 41 k.y.).
OriginalsprogEngelsk
TidsskriftGeosphere
Vol/bind9
Udgave nummer5
Sider (fra-til)1236-1256
Antal sider21
ISSN1553-040X
DOI
StatusUdgivet - 1 okt. 2013

ID: 119833605