Bioavailability and isotopic composition of CO2 released from incubated soil organic matter fractions

Research output: Contribution to journalJournal articleResearchpeer-review

  • Müller, Carsten W.
  • Martin Gutsch
  • Katja Kothieringer
  • Jens Leifeld
  • Janet Rethemeyer
  • Nicolas Brueggemann
  • Ingrid Kögel-Knabner

The stabilization of soil organic matter (SOM) is triggered by three main mechanisms: (i) low bioavailability due to aggregation, (ii) recalcitrance due to the chemical structure, and (iii) association of the SOM with mineral surfaces. In the present study we used particle size SOM fractions (sand, silt and clay), derived from the Ah soil horizon from a Norway spruce forest in Southern Germany, to study the effects of different stabilization mechanisms on the bioavailability of soil organic carbon (SOC) in a one year incubation experiment. The respired CO2 was hourly recorded, additionally 13CO2 was analysed 20 times and 14CO2 three times during the incubation experiment. To better differentiate between particulate OM (POM) and mineral associated OM (MIN), the incubated fractions and bulk soil were separated according to density (1.8gcm-3) after the incubation experiment. 13C-CPMAS NMR spectroscopy was used to study the chemical composition of the incubated samples. We demonstrate a clear increase in SOM bioavailability due to aggregate disruption, as the calculated theoretical CO2 evolution of the SOM fractions recombined by calculation was 43.8% higher in relation to the intact bulk soil. The incubated sand fraction, dominated by POM rich in O/N-alkyl C, showed a prolonged bioavailability of SOC moieties with mean residence times (MRT) of 78 years. Interestingly, the silt fraction, dominated by highly aliphatic, more recalcitrant POM, showed low mineralization rates and slow MRT's (192 years) close to values for the clay fraction (171 years), which contained a large amount of mineral-associated SOM. The recorded 13/12CO2 signatures showed a high depletion in 13C during the initial stage of the incubation, but an enrichment of the respired 13CO2 of up to 3.4‰ relative to the incubated SOM was observed over longer time periods (after 3 and 4 days for bulk soil and sand, respectively, and after 14 days for silt and clay). Therefore, we found no evidence for a 13C enrichment of SOM as driven by metabolic isotopic fractionation during microbial SOM mineralization, but an indication of a change in the isotopic composition of the C-source over time.

Original languageEnglish
JournalSoil Biology and Biochemistry
Volume69
Pages (from-to)168-178
Number of pages11
ISSN0038-0717
DOIs
Publication statusPublished - Feb 2014
Externally publishedYes

    Research areas

  • Density fractionation, Heterotrophic respiration, Laboratory incubation, Mean residence time, Microbial biomass, Particle size fractionation

ID: 239161870