DIAGENETIC EFFECT ON RESERVOIR QUALITY OF SILICICLASTIC AND VOLCANICLASTIC SANDSTONES FROM A PALEOGENE VOLCANIC RIFTED MARGIN, EAST GREENLAND

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

DIAGENETIC EFFECT ON RESERVOIR QUALITY OF SILICICLASTIC AND VOLCANICLASTIC SANDSTONES FROM A PALEOGENE VOLCANIC RIFTED MARGIN, EAST GREENLAND. / Weibel, Rikke; Vosgerau, Henrik; Larsen, Michael; Guarnieri, Pierpaolo; Kokfelt, Thomas Find; Dideriksen, Knud; Balić-Žunić, Tonci; Bell, Brian.

In: Journal of Sedimentary Research, Vol. 93, No. 12, 2023, p. 895-931.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Weibel, R, Vosgerau, H, Larsen, M, Guarnieri, P, Kokfelt, TF, Dideriksen, K, Balić-Žunić, T & Bell, B 2023, 'DIAGENETIC EFFECT ON RESERVOIR QUALITY OF SILICICLASTIC AND VOLCANICLASTIC SANDSTONES FROM A PALEOGENE VOLCANIC RIFTED MARGIN, EAST GREENLAND', Journal of Sedimentary Research, vol. 93, no. 12, pp. 895-931. https://doi.org/10.2110/jsr.2021.127

APA

Weibel, R., Vosgerau, H., Larsen, M., Guarnieri, P., Kokfelt, T. F., Dideriksen, K., Balić-Žunić, T., & Bell, B. (2023). DIAGENETIC EFFECT ON RESERVOIR QUALITY OF SILICICLASTIC AND VOLCANICLASTIC SANDSTONES FROM A PALEOGENE VOLCANIC RIFTED MARGIN, EAST GREENLAND. Journal of Sedimentary Research, 93(12), 895-931. https://doi.org/10.2110/jsr.2021.127

Vancouver

Weibel R, Vosgerau H, Larsen M, Guarnieri P, Kokfelt TF, Dideriksen K et al. DIAGENETIC EFFECT ON RESERVOIR QUALITY OF SILICICLASTIC AND VOLCANICLASTIC SANDSTONES FROM A PALEOGENE VOLCANIC RIFTED MARGIN, EAST GREENLAND. Journal of Sedimentary Research. 2023;93(12):895-931. https://doi.org/10.2110/jsr.2021.127

Author

Weibel, Rikke ; Vosgerau, Henrik ; Larsen, Michael ; Guarnieri, Pierpaolo ; Kokfelt, Thomas Find ; Dideriksen, Knud ; Balić-Žunić, Tonci ; Bell, Brian. / DIAGENETIC EFFECT ON RESERVOIR QUALITY OF SILICICLASTIC AND VOLCANICLASTIC SANDSTONES FROM A PALEOGENE VOLCANIC RIFTED MARGIN, EAST GREENLAND. In: Journal of Sedimentary Research. 2023 ; Vol. 93, No. 12. pp. 895-931.

Bibtex

@article{2ad88e7aec0b46de81d61d5a2520ba91,
title = "DIAGENETIC EFFECT ON RESERVOIR QUALITY OF SILICICLASTIC AND VOLCANICLASTIC SANDSTONES FROM A PALEOGENE VOLCANIC RIFTED MARGIN, EAST GREENLAND",
abstract = "Siliciclastic and volcaniclastic sediments in a volcanic rifted-margin succession may experience a complex diagenetic history during burial that can have a large impact on sandstone reservoir properties. To understand such changes, variations in initial sediment composition and succeeding diagenetic changes have been studied for a Paleogene outcrop analogue in the Kangerlussuaq area, East Greenland. The nature of the mafic volcanics-bearing succession, which consists of intra-volcanic sandstones, accommodated over quartz-rich pre-volcanic fluvial sandstones, are comparable to the settings of recently discovered hydrocarbon-producing sandstones in the Faroe–Shetland Basin on the conjugate Atlantic margin. Our petrographic and provenance investigations of the pre- and intra-volcanic sandstones are supported by geochemical and X-ray diffraction analyses. The intra-volcanic sandstones were deposited in shallow marine environments with mixed siliciclastic and volcaniclastic input, the latter rich in felsic to mafic volcanic rock fragments and feldspar grains. Similar zircon age distributions of pre- and intra-volcanic sandstones support a continued supply from the same siliciclastic sediment source after the onset of volcanism. Variations in initial detrital grain and pore-fluid (fresh to marine) compositions resulted in different diagenetic changes in the pre- and intra-volcanic sandstones. However, where siliciclastic sandstones were overlain by volcaniclastic rocks rather than massive lava flows, the diagenetic changes resemble those of the intra-volcanic sandstones. The cementing phases are typically quartz, illite (probably illitized kaolinite), and rare anatase in the pre-volcanic sandstones. Chlorite, calcite, zeolite/ feldspar, opal/quartz, and titanite are characteristic authigenic phases in the intra-volcanic sandstones. Precipitation of different minerals in the pre- and intra-volcanic sandstones show that the detrital composition (and to a lesser extent depositional environment) played a major role during early and late diagenesis after deep burial (up to 6–8 km). Inter-eruptive siliciclastic units may prove to form highly valuable reservoirs when they are composed of mixed siliciclastic and volcaniclastic material. In the stratigraphically youngest intra-volcanic sandstones and pre-volcanic sandstones overlain by hyaloclastite or tuff, there is a high potential for preservation of interparticle porosity during burial (, 5 km) due to early chlorite rims and the generation of secondary porosity after the dissolution of early zeolite cement.",
author = "Rikke Weibel and Henrik Vosgerau and Michael Larsen and Pierpaolo Guarnieri and Kokfelt, {Thomas Find} and Knud Dideriksen and Tonci Bali{\'c}-{\v Z}uni{\'c} and Brian Bell",
note = "Publisher Copyright: Copyright {\textcopyright} 2023, SEPM (Society for Sedimentary Geology).",
year = "2023",
doi = "10.2110/jsr.2021.127",
language = "English",
volume = "93",
pages = "895--931",
journal = "Journal of Sedimentary Research",
issn = "1527-1404",
publisher = "Society for Sedimentary Geology (S E P M)",
number = "12",

}

RIS

TY - JOUR

T1 - DIAGENETIC EFFECT ON RESERVOIR QUALITY OF SILICICLASTIC AND VOLCANICLASTIC SANDSTONES FROM A PALEOGENE VOLCANIC RIFTED MARGIN, EAST GREENLAND

AU - Weibel, Rikke

AU - Vosgerau, Henrik

AU - Larsen, Michael

AU - Guarnieri, Pierpaolo

AU - Kokfelt, Thomas Find

AU - Dideriksen, Knud

AU - Balić-Žunić, Tonci

AU - Bell, Brian

N1 - Publisher Copyright: Copyright © 2023, SEPM (Society for Sedimentary Geology).

PY - 2023

Y1 - 2023

N2 - Siliciclastic and volcaniclastic sediments in a volcanic rifted-margin succession may experience a complex diagenetic history during burial that can have a large impact on sandstone reservoir properties. To understand such changes, variations in initial sediment composition and succeeding diagenetic changes have been studied for a Paleogene outcrop analogue in the Kangerlussuaq area, East Greenland. The nature of the mafic volcanics-bearing succession, which consists of intra-volcanic sandstones, accommodated over quartz-rich pre-volcanic fluvial sandstones, are comparable to the settings of recently discovered hydrocarbon-producing sandstones in the Faroe–Shetland Basin on the conjugate Atlantic margin. Our petrographic and provenance investigations of the pre- and intra-volcanic sandstones are supported by geochemical and X-ray diffraction analyses. The intra-volcanic sandstones were deposited in shallow marine environments with mixed siliciclastic and volcaniclastic input, the latter rich in felsic to mafic volcanic rock fragments and feldspar grains. Similar zircon age distributions of pre- and intra-volcanic sandstones support a continued supply from the same siliciclastic sediment source after the onset of volcanism. Variations in initial detrital grain and pore-fluid (fresh to marine) compositions resulted in different diagenetic changes in the pre- and intra-volcanic sandstones. However, where siliciclastic sandstones were overlain by volcaniclastic rocks rather than massive lava flows, the diagenetic changes resemble those of the intra-volcanic sandstones. The cementing phases are typically quartz, illite (probably illitized kaolinite), and rare anatase in the pre-volcanic sandstones. Chlorite, calcite, zeolite/ feldspar, opal/quartz, and titanite are characteristic authigenic phases in the intra-volcanic sandstones. Precipitation of different minerals in the pre- and intra-volcanic sandstones show that the detrital composition (and to a lesser extent depositional environment) played a major role during early and late diagenesis after deep burial (up to 6–8 km). Inter-eruptive siliciclastic units may prove to form highly valuable reservoirs when they are composed of mixed siliciclastic and volcaniclastic material. In the stratigraphically youngest intra-volcanic sandstones and pre-volcanic sandstones overlain by hyaloclastite or tuff, there is a high potential for preservation of interparticle porosity during burial (, 5 km) due to early chlorite rims and the generation of secondary porosity after the dissolution of early zeolite cement.

AB - Siliciclastic and volcaniclastic sediments in a volcanic rifted-margin succession may experience a complex diagenetic history during burial that can have a large impact on sandstone reservoir properties. To understand such changes, variations in initial sediment composition and succeeding diagenetic changes have been studied for a Paleogene outcrop analogue in the Kangerlussuaq area, East Greenland. The nature of the mafic volcanics-bearing succession, which consists of intra-volcanic sandstones, accommodated over quartz-rich pre-volcanic fluvial sandstones, are comparable to the settings of recently discovered hydrocarbon-producing sandstones in the Faroe–Shetland Basin on the conjugate Atlantic margin. Our petrographic and provenance investigations of the pre- and intra-volcanic sandstones are supported by geochemical and X-ray diffraction analyses. The intra-volcanic sandstones were deposited in shallow marine environments with mixed siliciclastic and volcaniclastic input, the latter rich in felsic to mafic volcanic rock fragments and feldspar grains. Similar zircon age distributions of pre- and intra-volcanic sandstones support a continued supply from the same siliciclastic sediment source after the onset of volcanism. Variations in initial detrital grain and pore-fluid (fresh to marine) compositions resulted in different diagenetic changes in the pre- and intra-volcanic sandstones. However, where siliciclastic sandstones were overlain by volcaniclastic rocks rather than massive lava flows, the diagenetic changes resemble those of the intra-volcanic sandstones. The cementing phases are typically quartz, illite (probably illitized kaolinite), and rare anatase in the pre-volcanic sandstones. Chlorite, calcite, zeolite/ feldspar, opal/quartz, and titanite are characteristic authigenic phases in the intra-volcanic sandstones. Precipitation of different minerals in the pre- and intra-volcanic sandstones show that the detrital composition (and to a lesser extent depositional environment) played a major role during early and late diagenesis after deep burial (up to 6–8 km). Inter-eruptive siliciclastic units may prove to form highly valuable reservoirs when they are composed of mixed siliciclastic and volcaniclastic material. In the stratigraphically youngest intra-volcanic sandstones and pre-volcanic sandstones overlain by hyaloclastite or tuff, there is a high potential for preservation of interparticle porosity during burial (, 5 km) due to early chlorite rims and the generation of secondary porosity after the dissolution of early zeolite cement.

U2 - 10.2110/jsr.2021.127

DO - 10.2110/jsr.2021.127

M3 - Journal article

AN - SCOPUS:85181119723

VL - 93

SP - 895

EP - 931

JO - Journal of Sedimentary Research

JF - Journal of Sedimentary Research

SN - 1527-1404

IS - 12

ER -

ID: 390997542