Roots and rhizospheric soil microbial community responses to tree species mixtures

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Relena R. Ribbons
  • Israel Del Toro
  • Andy R. Smith
  • John R. Healey
  • Vesterdal, Lars
  • Morag A. McDonald

Below-ground processes are crucial in determining the effects of plants on ecosystem function. The root-soil interface is a highly active zone due to root exudation and nutrient uptake. However, its role in determining effects of tree species and their interactions on the soil microbial community, ecosystem function and above-ground growth is less well known. We compared the effects of tree species monocultures and their mixture on rhizospheric microbial communities, specific functional genetic markers associated with processes in the nitrogen (N) cycle, and above-ground and below-ground growth and nutrient allocation. Two pairs of tree species were grown: Pseudotsuga menziesii and Alnus rubra; Acer pseudoplatanus and Quercus robur. Tree establishment altered soil microbial composition, but after 26 months differences amongst tree species and effects of species mixture were minor, suggesting functional redundancy in microbial communities. A greater abundance of fungi, bacteria, and specifically ammonia oxidising and denitrifying bacteria in the rhizospheric soil of the N-fixing A. rubra was the most notable trend. Mixing A. rubra with P. menziesii did produce overyielding: trees grown in mixture attained a two-fold greater (Relative Yield Total 2.03 ± 0.52) above-ground biomass than in a mixture predicted from trees grown in monoculture. We did not observe strong trends in overyielding for A. psuedoplatanus and Q. robur. Inclusion of the N-fixing species A. rubra in admixture with P. menziesii promoted N cycling, and decreased the C:N ratios of leaf, branch, and root tissues but not soil C:N ratio for P. menziesii. Given the observed overyielding in the A. rubra with P. menziesii mixtures, we explored potential mechanistic links between functional genetic markers for nitrification and ammonification, however we found no statistically significant effects attributable to these genetic markers. We found root area index was significantly lower in A. rubra monocultures than in admixture with P. menziesii. For both P. menziesii and A. rubra, the number of root tips was lower in mixture than monoculture, indicating physical partitioning of soil space as a result of growing in mixture. We documented additive and synergistic effects of tree species identity on above and belowground productivity, and rhizospheric microbial community development in these four tree species.

OriginalsprogEngelsk
Artikelnummer104509
TidsskriftApplied Soil Ecology
Vol/bind176
Antal sider13
ISSN0929-1393
DOI
StatusUdgivet - 2022

Bibliografisk note

Funding Information:
Relena Ribbons reports financial support was provided by FONASO . The rest of the authors declare that they have no conflict of interest.

Funding Information:
Relena Ribbons reports financial support was provided by FONASO. The rest of the authors declare that they have no conflict of interest.R.R.R. was funded by the Education, Audiovisual and Culture Executive Agency (EACEA) of the European Commission under Erasmus Mundus Action 1 through individual Doctoral fellowships as part of the Erasmus Mundus Joint Doctoral Programme “Forests and Nature for Society” (FONASO). We thank Nigel Brown and the Friends of Treborth Botanic Garden, Natalie Chivers, Joan Ribbons, Sarah Chesworth, Llinos Hughes and Helen Simpson for field and laboratory support. The authors acknowledge the financial support provided by the Welsh Government and Higher Education Funding Council for Wales through the Sêr Cymru National Research Network for Low Carbon, Energy and Environment.

Funding Information:
R.R.R. was funded by the Education, Audiovisual and Culture Executive Agency (EACEA) of the European Commission under Erasmus Mundus Action 1 through individual Doctoral fellowships as part of the Erasmus Mundus Joint Doctoral Programme “Forests and Nature for Society” (FONASO). We thank Nigel Brown and the Friends of Treborth Botanic Garden, Natalie Chivers, Joan Ribbons, Sarah Chesworth, Llinos Hughes and Helen Simpson for field and laboratory support. The authors acknowledge the financial support provided by the Welsh Government and Higher Education Funding Council for Wales through the Sêr Cymru National Research Network for Low Carbon, Energy and Environment.

Publisher Copyright:
© 2022 Elsevier B.V.

ID: 306456797