Estimation of Recharge from Long-Term Monitoring of Saline Tracer Transport Using Electrical Resistivity Tomography

Research output: Contribution to journalJournal articleResearchpeer-review

The movement of a saline tracer added to the soil surface was monitored in the unsaturated zone using cross-borehole electrical resistivity tomography (ERT) and subjected to natural rainfall conditions. The ERT data were inverted and corrected for subsurface temperature changes, and spatial moment analysis was used to calculate the tracer mass, position of the center of mass, and thereby the downwardly recharging flux.

We conducted a field experiment at the agricultural field site Voulund within the Danish hydrological observatory, HOBE, with the purpose of estimating recharge using geophysical methods. In September 2011, a saline tracer was added across a 142-m2 area at the surface at an application rate mimicking natural infiltration. The movement of the saline tracer front was monitored using cross-borehole electrical resistivity tomography (ERT); data were collected on a daily to weekly basis and continued for 1 yr after tracer application. The ERT data were inverted and corrected for temperature changes in the subsurface, and spatial moment analysis was used to calculate the tracer mass, position of the center of mass, and thereby the downwardly recharging flux. The recovered mass was underestimated by the ERT data by up to 50%. Mass balance errors are widely recognized and are a result of variable resolution of the tomographic models and smoothing applied in the inversion routine. The results were nonetheless in very good agreement with pore water samples collected and analyzed from five cores extracted within the tracer application area during the same period. Recharge during the 7.5 mo from September 2011 to the end of April 2012 was estimated to be about 500 mm using the ERT data. This value is in good accord with recharge estimates made based on drainage data from buried lysimeters located only meters away from the cross-borehole ERT array. This suggests that long-term automated ERT monitoring of a surface-applied tracer is a promising technique for estimating groundwater recharge.
Original languageEnglish
JournalVadose Zone Journal
Volume14
Issue number7
Number of pages13
ISSN1539-1663
DOIs
Publication statusPublished - 2015

ID: 150196495