Geochemistry and petrology of mafic Proterozoic and Permian dykes on Bornholm, Denmark: Four episodes of magmatism on the margin of the Baltic Shield

Research output: Contribution to journalJournal articleResearchpeer-review

More than 250 dykes cut the mid Proterozoic basement gneisses and granites of Bornholm. Most trend between NNW and NNE, whereas a few trend NE and NW. Field, geochemical and petrological evidence suggest that the dyke intrusions occurred as four distinct events at around 1326 Ma (Kelseaa dyke), 1220 Ma (narrow dykes), 950 Ma (Kaas and Listed dykes), and 300 Ma (NW-trending dykes), respectively.The largest dyke at Kelseaa (60 m wide) and some related dykes are primitive olivine tholeiites, one of which has N-type MORB geochemical features; all are crustally contaminated.The Kelseaa type magmas were derived at shallow depth from a fluid-enriched, relatively depleted, mantle source, but some have a component derived from mantle with residual garnet. They are suggested to have formed in a back-arc environment.The more than 200 narrow dykes are olivine tholeiites (some picritic), alkali basalts, trachybasalts,
basanites and a few phonotephrites. The magmas evolved by olivine and olivine + clinopyroxene fractionation. They have trace element characteristics which can be described mainly by mixing of two components: one is a typical OIB-magma (La/Nb < 1, Zr/Nb = 4, Sr/Nd = 16) and rather shallowly derived from spinel peridotite; the other is enriched in Sr and has La/Nb = 1.0 - 1.5, Zr/Nb =
9, Sr/Nd = 30 and was derived at greater depth, probably from a pyroxenitic source. Both sources were probably recycled material in a mantle plume. A few of these dykes are much more enriched in incompatible elements and were derived from garnet peridotite by a small degree of partial melting.The Kaas and Listed dykes (20-40 m) and related dykes are evolved trachybasalts to basaltic trachyandesites.They are most likely related to the Blekinge Dalarne Dolerite Group. The few NW-trending dykes are quartz tholeiites, which were generated by large degrees of rather shallow melting of an enriched mantle source more enriched than the source of the older Bornholm dykes. The source of the NW-trending dykes was probably a very hot mantle plume.
Original languageEnglish
JournalBulletin of the Geological Society of Denmark
Volume58
Pages (from-to)35-65
Number of pages31
ISSN0011-6297
Publication statusPublished - 2010

ID: 15997187