Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites: implications for the "Great Dunite Shortage" and HED-mesosiderite connection

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites : implications for the "Great Dunite Shortage" and HED-mesosiderite connection. / Greenwood, Richard C.; Barrat, Jean-Alix; Scott, Edward R. D.; Haack, Henning; Buchanan, Paul C.; Franchi, Ian A.; Yamaguchi, Akira; Johnson, Diane; Bevan, Alex W. R.; Burbine, Thomas H.

I: Geochimica et Cosmochimica Acta, Bind 169, 2015, s. 115-136.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Greenwood, RC, Barrat, J-A, Scott, ERD, Haack, H, Buchanan, PC, Franchi, IA, Yamaguchi, A, Johnson, D, Bevan, AWR & Burbine, TH 2015, 'Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites: implications for the "Great Dunite Shortage" and HED-mesosiderite connection', Geochimica et Cosmochimica Acta, bind 169, s. 115-136. https://doi.org/10.1016/j.gca.2015.07.023

APA

Greenwood, R. C., Barrat, J-A., Scott, E. R. D., Haack, H., Buchanan, P. C., Franchi, I. A., Yamaguchi, A., Johnson, D., Bevan, A. W. R., & Burbine, T. H. (2015). Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites: implications for the "Great Dunite Shortage" and HED-mesosiderite connection. Geochimica et Cosmochimica Acta, 169, 115-136. https://doi.org/10.1016/j.gca.2015.07.023

Vancouver

Greenwood RC, Barrat J-A, Scott ERD, Haack H, Buchanan PC, Franchi IA o.a. Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites: implications for the "Great Dunite Shortage" and HED-mesosiderite connection. Geochimica et Cosmochimica Acta. 2015;169:115-136. https://doi.org/10.1016/j.gca.2015.07.023

Author

Greenwood, Richard C. ; Barrat, Jean-Alix ; Scott, Edward R. D. ; Haack, Henning ; Buchanan, Paul C. ; Franchi, Ian A. ; Yamaguchi, Akira ; Johnson, Diane ; Bevan, Alex W. R. ; Burbine, Thomas H. / Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites : implications for the "Great Dunite Shortage" and HED-mesosiderite connection. I: Geochimica et Cosmochimica Acta. 2015 ; Bind 169. s. 115-136.

Bibtex

@article{6bcc26a3409444628bac396fbf747dce,
title = "Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites: implications for the {"}Great Dunite Shortage{"} and HED-mesosiderite connection",
abstract = "Evidence from iron meteorites indicates that a large number of differentiated planetesimals formed early in Solar System history. These bodies should have had well-developed olivine-rich mantles andconsequentially such materials ought to be abundant both as asteroids and meteorites, which they are not. To investigate this {"}Great DuniteShortage{"} we have undertaken a geochemical and oxygen isotope study of main-group pallasites and dunitic rocks from mesosiderites.Oxygen isotope analysis of 24 main-group pallasites (103 replicates) yielded a mean Δ17O value of -0.187 ±0.016‰ (2σ), which is fully resolved from the HED Δ17O value of -0.246 ± 0.014 (2σ) obtained in our earlier study and demonstrates that both groups represent distinct populations and were derived from separate parent bodies. Our results show no evidence for Δ17O bimodality within themain-group pallasites, as suggested by a number of previous studies.Olivine-rich materials from the Vaca Muerta, Mount Padbury and Lamont mesosiderites, and from two related dunites (NWA 2968 and NWA 3329), have Δ17O values within error of the mesosiderite average. This indicates that these olivine-rich materials are co-genetic with other mesosiderite clasts and are not fragments from anisotopically distinct pallasite-like impactor. Despite its extreme lithologic diversity the mesosiderite parent body was essentially homogeneous with respect to Δ17O, a feature best explained by an early phase of large-scale melting (magma ocean), followed by prolonged igneous differentiation. Based on the results of magma ocean modeling studies, we infer that Mg-rich olivines in mesosiderites formed as cumulates in high-levelchambers and do not represent samples of the underlying mantle. By analogy, recently documented Mg-rich olivines in howardites may have a similar origin. Although the Dawn mission did not detect mesosiderite-like material on Vesta, evidence linking the mesosiderites and HEDs includes: (i) theirnearly identical oxygen isotope compositions; (ii) the presence in both of coarse-grained Mg-rich olivines; (iii) both have synchronous Lu-Hf and Mn-Cr ages; (iv) there are compositional similarities between the metal in both; and (v) mesosiderite-like material has been identified in a howardite breccia. The source of the mesosiderites remains an outstanding question in meteorite science. The underrepresentation of olivine-rich materials amongst both asteroidsand meteorites results from a range of factors. However, evidence from pallasites and mesosiderites indicates that the most important reason for this olivine shortage lies in the early, catastrophic destruction ofplanetesimals in the terrestrial planet-forming region and the subsequent preferential loss of their olivine-rich mantles.",
keywords = "Faculty of Science",
author = "Greenwood, {Richard C.} and Jean-Alix Barrat and Scott, {Edward R. D.} and Henning Haack and Buchanan, {Paul C.} and Franchi, {Ian A.} and Akira Yamaguchi and Diane Johnson and Bevan, {Alex W. R.} and Burbine, {Thomas H.}",
year = "2015",
doi = "10.1016/j.gca.2015.07.023",
language = "English",
volume = "169",
pages = "115--136",
journal = "Geochimica et Cosmochimica Acta",
issn = "0016-7037",
publisher = "Pergamon Press",

}

RIS

TY - JOUR

T1 - Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites

T2 - implications for the "Great Dunite Shortage" and HED-mesosiderite connection

AU - Greenwood, Richard C.

AU - Barrat, Jean-Alix

AU - Scott, Edward R. D.

AU - Haack, Henning

AU - Buchanan, Paul C.

AU - Franchi, Ian A.

AU - Yamaguchi, Akira

AU - Johnson, Diane

AU - Bevan, Alex W. R.

AU - Burbine, Thomas H.

PY - 2015

Y1 - 2015

N2 - Evidence from iron meteorites indicates that a large number of differentiated planetesimals formed early in Solar System history. These bodies should have had well-developed olivine-rich mantles andconsequentially such materials ought to be abundant both as asteroids and meteorites, which they are not. To investigate this "Great DuniteShortage" we have undertaken a geochemical and oxygen isotope study of main-group pallasites and dunitic rocks from mesosiderites.Oxygen isotope analysis of 24 main-group pallasites (103 replicates) yielded a mean Δ17O value of -0.187 ±0.016‰ (2σ), which is fully resolved from the HED Δ17O value of -0.246 ± 0.014 (2σ) obtained in our earlier study and demonstrates that both groups represent distinct populations and were derived from separate parent bodies. Our results show no evidence for Δ17O bimodality within themain-group pallasites, as suggested by a number of previous studies.Olivine-rich materials from the Vaca Muerta, Mount Padbury and Lamont mesosiderites, and from two related dunites (NWA 2968 and NWA 3329), have Δ17O values within error of the mesosiderite average. This indicates that these olivine-rich materials are co-genetic with other mesosiderite clasts and are not fragments from anisotopically distinct pallasite-like impactor. Despite its extreme lithologic diversity the mesosiderite parent body was essentially homogeneous with respect to Δ17O, a feature best explained by an early phase of large-scale melting (magma ocean), followed by prolonged igneous differentiation. Based on the results of magma ocean modeling studies, we infer that Mg-rich olivines in mesosiderites formed as cumulates in high-levelchambers and do not represent samples of the underlying mantle. By analogy, recently documented Mg-rich olivines in howardites may have a similar origin. Although the Dawn mission did not detect mesosiderite-like material on Vesta, evidence linking the mesosiderites and HEDs includes: (i) theirnearly identical oxygen isotope compositions; (ii) the presence in both of coarse-grained Mg-rich olivines; (iii) both have synchronous Lu-Hf and Mn-Cr ages; (iv) there are compositional similarities between the metal in both; and (v) mesosiderite-like material has been identified in a howardite breccia. The source of the mesosiderites remains an outstanding question in meteorite science. The underrepresentation of olivine-rich materials amongst both asteroidsand meteorites results from a range of factors. However, evidence from pallasites and mesosiderites indicates that the most important reason for this olivine shortage lies in the early, catastrophic destruction ofplanetesimals in the terrestrial planet-forming region and the subsequent preferential loss of their olivine-rich mantles.

AB - Evidence from iron meteorites indicates that a large number of differentiated planetesimals formed early in Solar System history. These bodies should have had well-developed olivine-rich mantles andconsequentially such materials ought to be abundant both as asteroids and meteorites, which they are not. To investigate this "Great DuniteShortage" we have undertaken a geochemical and oxygen isotope study of main-group pallasites and dunitic rocks from mesosiderites.Oxygen isotope analysis of 24 main-group pallasites (103 replicates) yielded a mean Δ17O value of -0.187 ±0.016‰ (2σ), which is fully resolved from the HED Δ17O value of -0.246 ± 0.014 (2σ) obtained in our earlier study and demonstrates that both groups represent distinct populations and were derived from separate parent bodies. Our results show no evidence for Δ17O bimodality within themain-group pallasites, as suggested by a number of previous studies.Olivine-rich materials from the Vaca Muerta, Mount Padbury and Lamont mesosiderites, and from two related dunites (NWA 2968 and NWA 3329), have Δ17O values within error of the mesosiderite average. This indicates that these olivine-rich materials are co-genetic with other mesosiderite clasts and are not fragments from anisotopically distinct pallasite-like impactor. Despite its extreme lithologic diversity the mesosiderite parent body was essentially homogeneous with respect to Δ17O, a feature best explained by an early phase of large-scale melting (magma ocean), followed by prolonged igneous differentiation. Based on the results of magma ocean modeling studies, we infer that Mg-rich olivines in mesosiderites formed as cumulates in high-levelchambers and do not represent samples of the underlying mantle. By analogy, recently documented Mg-rich olivines in howardites may have a similar origin. Although the Dawn mission did not detect mesosiderite-like material on Vesta, evidence linking the mesosiderites and HEDs includes: (i) theirnearly identical oxygen isotope compositions; (ii) the presence in both of coarse-grained Mg-rich olivines; (iii) both have synchronous Lu-Hf and Mn-Cr ages; (iv) there are compositional similarities between the metal in both; and (v) mesosiderite-like material has been identified in a howardite breccia. The source of the mesosiderites remains an outstanding question in meteorite science. The underrepresentation of olivine-rich materials amongst both asteroidsand meteorites results from a range of factors. However, evidence from pallasites and mesosiderites indicates that the most important reason for this olivine shortage lies in the early, catastrophic destruction ofplanetesimals in the terrestrial planet-forming region and the subsequent preferential loss of their olivine-rich mantles.

KW - Faculty of Science

U2 - 10.1016/j.gca.2015.07.023

DO - 10.1016/j.gca.2015.07.023

M3 - Journal article

VL - 169

SP - 115

EP - 136

JO - Geochimica et Cosmochimica Acta

JF - Geochimica et Cosmochimica Acta

SN - 0016-7037

ER -

ID: 144707571