Maja Bar Rasmussen
Postdoc
Geologi
Øster Voldgade 10
1350 København K
Min forskning kort fortalt
Min forskning fokuserer på geokemien af mineraler og bjergarter og studiet af geokemiske processer fra lav-temperaturreaktioner, såsom fluid-bjergart interaktioner og tungmetalforurening til høj-temperaturprocesser der involverer studiet af jordens kappe og dens kemi, arbejdet med lavaprøver og geokemiske processer der opererer i skorpen. Mit nuværende fokus er på brugen af mineralers (olivin og plagioklas) naturlige nedbrydelse til at fange og lagre CO2. Dette arbejde involverer laboratoriebaserede samt naturlige eksperimenter i det fri med mineraler, byggeaffald og mineaffald.
Læs her fem svar på fem spørgsmål vedrørende min forskning i CO2 lagring ved hjælp af geologiske materialer Maja Bar Rasmussen – Københavns Universitet (ku.dk)
Areas of research
Mineral alteration and weathering relating to carbon capture and storage means involving enhanced weathering processes
Recycling of building materials and mining waste for possible use in CO2 mitigating processes for carbon capture and storage
Mantle geochemistry and crustal processes affecting the geochemistry of basalts
Current projects, research interests, teaching activities and laboratory facility responsibilities
Enhanced weathering and carbonation of olivine
This project revolves around the use of olivine weathering as a mean for capturing and storing atmospheric CO2. The project involves laboratory-based experiments on olivine-fluid reactions using various fluid types and various temperatures and CO2 pressures. In addition to weathering experiments at ambient conditions, I also study the processes relating to carbonation of olivine resulting in the formation of magnesite, a Mg-rich carbonate phase capable of storing CO2 over long periods of time. Moreover, I am currently developing experimental set-ups to be used for experiments mimicking the use of olivine as a mean for carbon capture and storage in the Danish nature.
This research is funded through the Independent Research Fund Denmark (through Kristoffer Szilas)
You can read more about this project on the following links:
Dansk: Mineralet olivin kan trække CO2 ud af atmosfæren – Københavns Universitet (ku.dk)
English: The mineral olivine can extract CO2 from the atmosphere – University of Copenhagen (ku.dk)
Potential for long-term CO2 storage through enhanced weathering of Ca-silicate minerals and materials
This project will commence in December 2023 and focuses on the potential CO2 storage posed by weathering and carbonation of Ca-Al silicate minerals and building- and mining waste associated with anorthosite mining. The project will be focused on laboratory-based experiments altering various Ca-Al silicate materials in the presence of CO2 and water at various temperatures and pressure. The work will moreover involve developing geochemical models describing the alteration of such materials to evaluate their potential to capture and store CO2 through enhanced weathering and carbonation.
This research is funded through the Independent Research Fund Denmark (starting from December 2023)
You can read more about this project on the following links:
Dansk: Forskningsprojekter — Danmarks Frie Forskningsfond (dff.dk)
Maja Bar Rasmussen modtager 2,9 millioner kr. fra Danmarks Frie forskningsfond - KUnet
English: Maja Bar Rasmussen receives DKK 2,9 million from Independent Research Fund Denmark (ku.dk)
Olivine chemistry, mantle heterogeneity and crustal processes affecting basalt geochemistry
This project relates to work during my PhD where I studied olivine chemistry variations and the importance of such variations to the mantle source beneath Iceland. Olivine is usually the first mineral to crystallise during the ascent of mantle-derived melts and is stable over a large range in pressure, temperature, and melt composition. Because of this, the chemistry of olivine is often used as a proxy for primitive melt compositions prior to secondary modifications occurring in the uppermost part of the mantle and the crust. Iceland is the largest subaerial section of the global mid-ocean-ridge system and reflects the current location of the Iceland mantle plume. Previous work has shown that the mantle beneath Iceland is chemically heterogenous, and this has been attributed in part to the presence of recycled crust entrained within the upwelling plume. The recognition of a chemically heterogenous plume, together with the widespread occurrence of primitive basalts, makes Iceland an ideal location to identify the properties of recycled crust in a mantle plume from the chemical composition of high-forsterite olivine.
I apply a combination of in-situ and bulk digestion analytical techniques to produce an internally-consistent, high-precision dataset for distinguishing mantle-derived variability from the effect of secondary processes, such as fractional crystallisation and assimilation. Examples of my previous work related to this subjects is:
Aside from the work on olivine chemistry, I study melt and mineral evolution of Icelandic basalts, from samples sampling the most enriched sources of the Icelandic mantle and fresh basalts from the 2021 and 2022 Fagradalsfjall eruptions.
Supervision, teaching and laboratory facility responsibilities
Current supervision of 1 BSc and 3 MSc students and one graduated MSc student (graduated November 2022)
In charge of the X-Ray diffraction laboratory facilities and mineral weathering laboratory (including a high-pressure titanium Parr reactor and facilities for enhanced weathering experiments)
If you have any queries, interest in collaboration or student projects, feel free to contact me through mr@ign.ku.dk
ID: 298434116
Flest downloads
-
24
downloads
Settling of buoyant microplastic in estuaries: The importance of flocculation
Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › fagfællebedømt
Udgivet -
15
downloads
Magmatic olivine as a tool to investigate geochemical mantle heterogeneities beneath Iceland
Publikation: Bog/antologi/afhandling/rapport › Ph.d.-afhandling › Forskning
-
14
downloads
Rapid shifting of a deep magmatic source at Fagradalsfjall volcano, Iceland
Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › fagfællebedømt
Udgivet