Is the Proterozoic Ladoga Rift (SE Baltic Shield) a rift?

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Is the Proterozoic Ladoga Rift (SE Baltic Shield) a rift? / Artemieva, Irina; Shulgin, Alexey.

I: Precambrian Research, Bind 259, 04.2015, s. 34-42.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Artemieva, I & Shulgin, A 2015, 'Is the Proterozoic Ladoga Rift (SE Baltic Shield) a rift?', Precambrian Research, bind 259, s. 34-42. https://doi.org/10.1016/j.precamres.2014.08.011

APA

Artemieva, I., & Shulgin, A. (2015). Is the Proterozoic Ladoga Rift (SE Baltic Shield) a rift? Precambrian Research, 259, 34-42. https://doi.org/10.1016/j.precamres.2014.08.011

Vancouver

Artemieva I, Shulgin A. Is the Proterozoic Ladoga Rift (SE Baltic Shield) a rift? Precambrian Research. 2015 apr.;259:34-42. https://doi.org/10.1016/j.precamres.2014.08.011

Author

Artemieva, Irina ; Shulgin, Alexey. / Is the Proterozoic Ladoga Rift (SE Baltic Shield) a rift?. I: Precambrian Research. 2015 ; Bind 259. s. 34-42.

Bibtex

@article{6e5c375df9fc425d878e057e76a0d470,
title = "Is the Proterozoic Ladoga Rift (SE Baltic Shield) a rift?",
abstract = "The southern part of the Baltic Shield hosts a series of mafic dykes and sills ofMesoproterozoic ages, including a ca. 1.53-1.46 Ga sheet-like gabbro-dolerite sills and the Salmi plateau-basalts from the Lake Ladoga region. Based on chiefly geochemical data, the region is conventionally interpreted as an intracratonic Ladoga rift (graben). We question the validity of this geodynamic interpretation by analyzing regional geophysical data (crustal structure, heat flow, Bouguer gravity anomalies, magnetic anomalies, and mantle Vs velocities). We provide a complete list of tectonic, magmatic, and geophysical characteristics typical of continental rifts in general and demonstrate that, except for magmatic and, perhaps, some gravity signature, the Lake Ladoga region lacks any other rift features. We also compare the geophysical data from the Lake Ladoga region with similar in age Midcontinent and Valday rifts, and provide alternative explanations for Mesoproterozoic geodynamic evolution of the southern Baltic Shield. We propose that Mesoproterozoic mafic intrusions in southern Fennoscandia may be associated with a complex deformation pattern during reconfiguration of (a part of) Nuna (Columbia) supercontinent, which led to magma intrusions as a series of mafic dykes along lithosphere weakness zones and ponding of small magma pockets within the cratonic lithosphere.Consequent magma cooling and its partial transition to eclogite facies could have led to the formation of a series of basement depressions, similar to intracratonic basins of North America, while spatially heterogeneous thermo-chemical subsidence, with phase transitions locally speeded by the presence of (subduction-related) fluids, could have produced a series of faults bounding graben-like structures. ",
author = "Irina Artemieva and Alexey Shulgin",
year = "2015",
month = apr,
doi = "10.1016/j.precamres.2014.08.011",
language = "English",
volume = "259",
pages = "34--42",
journal = "Precambrian Research",
issn = "0301-9268",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Is the Proterozoic Ladoga Rift (SE Baltic Shield) a rift?

AU - Artemieva, Irina

AU - Shulgin, Alexey

PY - 2015/4

Y1 - 2015/4

N2 - The southern part of the Baltic Shield hosts a series of mafic dykes and sills ofMesoproterozoic ages, including a ca. 1.53-1.46 Ga sheet-like gabbro-dolerite sills and the Salmi plateau-basalts from the Lake Ladoga region. Based on chiefly geochemical data, the region is conventionally interpreted as an intracratonic Ladoga rift (graben). We question the validity of this geodynamic interpretation by analyzing regional geophysical data (crustal structure, heat flow, Bouguer gravity anomalies, magnetic anomalies, and mantle Vs velocities). We provide a complete list of tectonic, magmatic, and geophysical characteristics typical of continental rifts in general and demonstrate that, except for magmatic and, perhaps, some gravity signature, the Lake Ladoga region lacks any other rift features. We also compare the geophysical data from the Lake Ladoga region with similar in age Midcontinent and Valday rifts, and provide alternative explanations for Mesoproterozoic geodynamic evolution of the southern Baltic Shield. We propose that Mesoproterozoic mafic intrusions in southern Fennoscandia may be associated with a complex deformation pattern during reconfiguration of (a part of) Nuna (Columbia) supercontinent, which led to magma intrusions as a series of mafic dykes along lithosphere weakness zones and ponding of small magma pockets within the cratonic lithosphere.Consequent magma cooling and its partial transition to eclogite facies could have led to the formation of a series of basement depressions, similar to intracratonic basins of North America, while spatially heterogeneous thermo-chemical subsidence, with phase transitions locally speeded by the presence of (subduction-related) fluids, could have produced a series of faults bounding graben-like structures.

AB - The southern part of the Baltic Shield hosts a series of mafic dykes and sills ofMesoproterozoic ages, including a ca. 1.53-1.46 Ga sheet-like gabbro-dolerite sills and the Salmi plateau-basalts from the Lake Ladoga region. Based on chiefly geochemical data, the region is conventionally interpreted as an intracratonic Ladoga rift (graben). We question the validity of this geodynamic interpretation by analyzing regional geophysical data (crustal structure, heat flow, Bouguer gravity anomalies, magnetic anomalies, and mantle Vs velocities). We provide a complete list of tectonic, magmatic, and geophysical characteristics typical of continental rifts in general and demonstrate that, except for magmatic and, perhaps, some gravity signature, the Lake Ladoga region lacks any other rift features. We also compare the geophysical data from the Lake Ladoga region with similar in age Midcontinent and Valday rifts, and provide alternative explanations for Mesoproterozoic geodynamic evolution of the southern Baltic Shield. We propose that Mesoproterozoic mafic intrusions in southern Fennoscandia may be associated with a complex deformation pattern during reconfiguration of (a part of) Nuna (Columbia) supercontinent, which led to magma intrusions as a series of mafic dykes along lithosphere weakness zones and ponding of small magma pockets within the cratonic lithosphere.Consequent magma cooling and its partial transition to eclogite facies could have led to the formation of a series of basement depressions, similar to intracratonic basins of North America, while spatially heterogeneous thermo-chemical subsidence, with phase transitions locally speeded by the presence of (subduction-related) fluids, could have produced a series of faults bounding graben-like structures.

U2 - 10.1016/j.precamres.2014.08.011

DO - 10.1016/j.precamres.2014.08.011

M3 - Journal article

VL - 259

SP - 34

EP - 42

JO - Precambrian Research

JF - Precambrian Research

SN - 0301-9268

ER -

ID: 125422884