The global biogeography of tree leaf form and habit

Publikation: Bidrag til tidsskriftLetterForskningfagfællebedømt

Dokumenter

  • Haozhi Ma
  • Thomas W. Crowther
  • Lidong Mo
  • Daniel S. Maynard
  • Susanne S. Renner
  • Johan van den Hoogen
  • Yibiao Zou
  • Jingjing Liang
  • Sergio de-Miguel
  • Gert Jan Nabuurs
  • Peter B. Reich
  • Ülo Niinemets
  • Meinrad Abegg
  • Yves C. Adou Yao
  • Giorgio Alberti
  • Angelica M. Almeyda Zambrano
  • Braulio Vilchez Alvarado
  • Esteban Alvarez-Dávila
  • Patricia Alvarez-Loayza
  • Luciana F. Alves
  • Christian Ammer
  • Clara Antón-Fernández
  • Alejandro Araujo-Murakami
  • Luzmila Arroyo
  • Valerio Avitabile
  • Gerardo A. Aymard
  • Timothy R. Baker
  • Radomir Bałazy
  • Olaf Banki
  • Jorcely G. Barroso
  • Meredith L. Bastian
  • Jean Francois Bastin
  • Luca Birigazzi
  • Philippe Birnbaum
  • Robert Bitariho
  • Pascal Boeckx
  • Frans Bongers
  • Olivier Bouriaud
  • Pedro H.S. Brancalion
  • Susanne Brandl
  • Francis Q. Brearley
  • Roel Brienen
  • Eben N. Broadbent
  • Helge Bruelheide
  • Filippo Bussotti
  • Roberto Cazzolla Gatti
  • Ricardo G. César
  • Goran Cesljar
  • Robin Chazdon
  • Han Y.H. Chen
  • Chelsea Chisholm
  • Hyunkook Cho
  • Emil Cienciala
  • Connie Clark
  • David Clark
  • Gabriel D. Colletta
  • David A. Coomes
  • Fernando Cornejo Valverde
  • José J. Corral-Rivas
  • Philip M. Crim
  • Jonathan R. Cumming
  • Selvadurai Dayanandan
  • André L. de Gasper
  • Mathieu Decuyper
  • Géraldine Derroire
  • Ben DeVries
  • Ilija Djordjevic
  • Jiri Dolezal
  • Aurélie Dourdain
  • Nestor Laurier Engone Obiang
  • Brian J. Enquist
  • Teresa J. Eyre
  • Adandé Belarmain Fandohan
  • Tom M. Fayle
  • Ted R. Feldpausch
  • Leandro V. Ferreira
  • Leena Finér
  • Markus Fischer
  • Christine Fletcher
  • Jonas Fridman
  • Lorenzo Frizzera
  • Javier G.P. Gamarra
  • Damiano Gianelle
  • Henry B. Glick
  • David J. Harris
  • Andrew Hector
  • Andreas Hemp
  • Geerten Hengeveld
  • Bruno Hérault
  • John L. Herbohn
  • Martin Herold
  • Annika Hillers
  • Eurídice N. Honorio Coronado
  • Cang Hui
  • Thomas T. Ibanez
  • Iêda Amaral
  • Nobuo Imai
  • Andrzej M. Jagodziński
  • Bogdan Jaroszewicz
  • Carlos A. Joly
  • Tommaso Jucker
  • Ilbin Jung
  • Viktor Karminov
  • Kuswata Kartawinata
  • Elizabeth Kearsley
  • David Kenfack
  • Deborah K. Kennard
  • Gunnar Keppel
  • Mohammed Latif Khan
  • Timothy J. Killeen
  • Hyun Seok Kim
  • Kanehiro Kitayama
  • Michael Köhl
  • Henn Korjus
  • Florian Kraxner
  • Dmitry Kucher
  • Diana Laarmann
  • Mait Lang
  • Simon L. Lewis
  • Huicui Lu
  • Natalia V. Lukina
  • Brian S. Maitner
  • Yadvinder Malhi
  • Eric Marcon
  • Beatriz Schwantes Marimon
  • Ben Hur Marimon-Junior
  • Andrew R. Marshall
  • Emanuel H. Martin
  • Jorge A. Meave
  • Omar Melo-Cruz
  • Casimiro Mendoza
  • Cory Merow
  • Abel Monteagudo Mendoza
  • Vanessa S. Moreno
  • Sharif A. Mukul
  • Philip Mundhenk
  • María Guadalupe Nava-Miranda
  • David Neill
  • Victor J. Neldner
  • Radovan V. Nevenic
  • Michael R. Ngugi
  • Pascal A. Niklaus
  • Jacek Oleksyn
  • Petr Ontikov
  • Edgar Ortiz-Malavasi
  • Yude Pan
  • Alain Paquette
  • Alexander Parada-Gutierrez
  • Elena I. Parfenova
  • Minjee Park
  • Marc Parren
  • Narayanaswamy Parthasarathy
  • Pablo L. Peri
  • Sebastian Pfautsch
  • Oliver L. Phillips
  • Nicolas Picard
  • Maria Teresa F. Piedade
  • Daniel Piotto
  • Nigel C.A. Pitman
  • Irina Mendoza-Polo
  • Axel D. Poulsen
  • John R. Poulsen
  • Hans Pretzsch
  • Freddy Ramirez Arevalo
  • Zorayda Restrepo-Correa
  • Mirco Rodeghiero
  • Samir G. Rolim
  • Anand Roopsind
  • Francesco Rovero
  • Ervan Rutishauser
  • Purabi Saikia
  • Christian Salas-Eljatib
  • Philippe Saner
  • Peter Schall
  • Mart Jan Schelhaas
  • Dmitry Schepaschenko
  • Michael Scherer-Lorenzen
  • Bernhard Schmid
  • Jochen Schöngart
  • Eric B. Searle
  • Vladimír Seben
  • Josep M. Serra-Diaz
  • Douglas Sheil
  • Anatoly Z. Shvidenko
  • Javier E. Silva-Espejo
  • Marcos Silveira
  • James Singh
  • Plinio Sist
  • Ferry Slik
  • Bonaventure Sonké
  • Alexandre F. Souza
  • Stanislaw Miścicki
  • Krzysztof J. Stereńczak
  • Jens Christian Svenning
  • Miroslav Svoboda
  • Ben Swanepoel
  • Natalia Targhetta
  • Nadja Tchebakova
  • Hans ter Steege
  • Raquel Thomas
  • Elena Tikhonova
  • Peter M. Umunay
  • Vladimir A. Usoltsev
  • Renato Valencia
  • Fernando Valladares
  • Fons van der Plas
  • Tran Van Do
  • Michael E. van Nuland
  • Rodolfo M. Vasquez
  • Hans Verbeeck
  • Helder Viana
  • Alexander C. Vibrans
  • Simone Vieira
  • Klaus von Gadow
  • Hua Feng Wang
  • James V. Watson
  • Gijsbert D.A. Werner
  • Bertil Westerlund
  • Susan K. Wiser
  • Florian Wittmann
  • Hannsjoerg Woell
  • Verginia Wortel
  • Roderick Zagt
  • Tomasz Zawiła-Niedźwiecki
  • Chunyu Zhang
  • Xiuhai Zhao
  • Mo Zhou
  • Zhi Xin Zhu
  • Irie C. Zo-Bi
  • Constantin M. Zohner

Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17–34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.

OriginalsprogEngelsk
TidsskriftNature Plants
Vol/bind9
Sider (fra-til)1795–1809
ISSN2055-026X
DOI
StatusUdgivet - 2023

Bibliografisk note

Funding Information:
We thank the Global Forest Biodiversity Initiative (GFBi) for establishing the data standards and collaborative framework; TRY database managers and countless researchers who contributed open-access data. This work was supported by grants to C.M.Z. from the Ambizione fellowship (PZ00P3_193646), L.M. from the China Scholarship Council, and T.W.C. from DOB Ecology and the Bernina Foundation. O.B. acknowledges funding from the Romania National Council for Higher Education, CNFIS, project number CNFIS-FDI-2023-F-0579. We thank the French National Forest Inventory (NFI campaigns; raw data 2005 and subsequent annual surveys were downloaded by GFBI at https://inventaire-forestier.ign.fr/spip.php?rubrique159 , accessed on 1 January 2015) and the Italian Forest Inventory (NFI campaigns; raw data 2005 and subsequent surveys were downloaded by GFBI at https://inventarioforestale.org/ , accessed on 27 April 2019); G.A. was supported by the Italian National Recovery Plan through the National Biodiversity Future Center. M.B. thanks the BOS Foundation, the Indonesian Institute of Sciences (LIPI), the Direktorat Fasilitasi Organisasi Politik dan Kemasyarakatan, Departamen Dalam Negri, and the BKSDA Palangkaraya for permission to work in the MAWAS region of Indonesia, and acknowledges funding from The American Society of Primatologists, the Duke University Graduate School, the L.S.B. Leakey Foundation, the National Science Foundation (Grant No. 0452995) and the Wenner-Gren Foundation for Anthropological Research (Grant No. 7330). K.S. thanks the IBL for supporting this work by internal funds under project no. 261509 “AFTER FBS - maintenance of ForBioSensing project performance indicators”. Plot data collection from Białowieża Forest was supported by Project LIFE+ ForBioSensing (contract number LIFE13ENV/PL/000048) and Poland’s National Fund for Environmental Protection and Water Management (contract number 485/2014/WN10/OPNMLF/D). Plot data collection from Central Siberia was supported by Russian Science Foundation project no 21-46-07002. Contributions from ForestPlots.net and RAINFOR were supported by numerous sources, including the European Research Council (ERC Advanced Grant 291585 – ‘T-FORCES’), the Gordon and Betty Moore Foundation (1656 ‘RAINFOR’), the Natural Environment Research Council (including NE/B503384/1, NE/N012542/1) and the Royal Society (ICA/R1/180100 - ‘FORAMA’). We also thank the National Council for Science and Technology Development of Brazil (CNPq) for support to the Cerrado/Amazonia Transition Long-Term Ecology Project (PELD/441244/2016-5). J.D. was funded by the Czech Science Foundation (project no. 21-26883S).We are grateful to all the ministries and agencies from the Government of Spain and to all the people that supported the collection, compilation, and coordination of forest inventory data, also including the Spanish National Forest Inventories. Sergio de Miguel benefitted from a Serra-Húnter fellowship provided by the Government of Catalonia (Generalitat de Catalunya). J.C.S. considers this work a contribution to Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), funded by the Danish National Research Foundation (grant DNRF173) and his VILLUM Investigator project ‘Biodiversity Dynamics in a Changing World’, funded by VILLUM FONDEN (grant 16549). The exploratory plots of FunDivEUROPE were established through funding from the European Union Seventh Framework Programme FP7/2007-2013 under Grant 265171. Plot data collection from the Brazilian Atlantic Forest was supported by the State of São Paulo Research Foundation/FAPESP (BIOTA Grants 2003/12595-7; 2012/51509-8 and 2012/51872-5) and by the Brazilian National Research Council/CNPq (PELD Grant 403710/2012-0). H.V was funded by FCT - Portuguese Foundation for Science and Technology, project UIDB/04033/2020 and ICNF-Instituto da Conservação da Natureza, Portugal, National Forest Inventory. Financial support for the Monafor network in Mexico came from many projects, including the National Forestry Commission (CONAFOR), Council of Science and Technology of the State of Durango (COCYTED), the Natural Environment Research Council, UK (NERC; NE/T011084/1), and local support of Ejidos and Comunidades. We also directly acknowledge the use of data drawn from the Natural Forest plot data collected between January 2009 and March 2014 by the LUCAS programme for the New Zealand Ministry for the Environment. Data were sourced via the NZ National Vegetation Survey (NVS) Databank.

Publisher Copyright:
© 2023, The Author(s).

ID: 372084947