Mapping horizontal and vertical urban densification in Denmark with Landsat time-series from 1985 to 2018: A semantic segmentation solution

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Mapping horizontal and vertical urban densification in Denmark with Landsat time-series from 1985 to 2018 : A semantic segmentation solution. / Chen, Tzu Hsin Karen; Qiu, Chunping; Schmitt, Michael; Zhu, Xiao Xiang; Sabel, Clive E.; Prishchepov, Alexander V.

I: Remote Sensing of Environment, Bind 251, 112096, 15.12.2020.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Chen, THK, Qiu, C, Schmitt, M, Zhu, XX, Sabel, CE & Prishchepov, AV 2020, 'Mapping horizontal and vertical urban densification in Denmark with Landsat time-series from 1985 to 2018: A semantic segmentation solution', Remote Sensing of Environment, bind 251, 112096. https://doi.org/10.1016/j.rse.2020.112096

APA

Chen, T. H. K., Qiu, C., Schmitt, M., Zhu, X. X., Sabel, C. E., & Prishchepov, A. V. (2020). Mapping horizontal and vertical urban densification in Denmark with Landsat time-series from 1985 to 2018: A semantic segmentation solution. Remote Sensing of Environment, 251, [112096]. https://doi.org/10.1016/j.rse.2020.112096

Vancouver

Chen THK, Qiu C, Schmitt M, Zhu XX, Sabel CE, Prishchepov AV. Mapping horizontal and vertical urban densification in Denmark with Landsat time-series from 1985 to 2018: A semantic segmentation solution. Remote Sensing of Environment. 2020 dec. 15;251. 112096. https://doi.org/10.1016/j.rse.2020.112096

Author

Chen, Tzu Hsin Karen ; Qiu, Chunping ; Schmitt, Michael ; Zhu, Xiao Xiang ; Sabel, Clive E. ; Prishchepov, Alexander V. / Mapping horizontal and vertical urban densification in Denmark with Landsat time-series from 1985 to 2018 : A semantic segmentation solution. I: Remote Sensing of Environment. 2020 ; Bind 251.

Bibtex

@article{6662628c611545c087bf830bdba596f1,
title = "Mapping horizontal and vertical urban densification in Denmark with Landsat time-series from 1985 to 2018: A semantic segmentation solution",
abstract = "Landsat imagery is an unparalleled freely available data source that allows reconstructing land-cover and land-use change, including urban form. This paper addresses the challenge of using Landsat data, particularly its 30 m spatial resolution, for monitoring three-dimensional urban densification. Unlike conventional convolutional neural networks (CNNs) for scene recognition resulting in resolution loss, the proposed semantic segmentation framework provides a pixel-wise classification and improves the accuracy of urban form mapping. We compare temporal and spatial transferability of an adapted DeepLab model with a simple fully convolutional network (FCN) and a texture-based random forest (RF) model to map urban density in the two morphological dimensions: horizontal (compact, open, sparse) and vertical (high rise, low rise). We test whether a model trained on the 2014 data can be applied to 2006 and 1995 for Denmark, and examine whether we could use the model trained on the Danish data to accurately map ten other European cities. Our results show that an implementation of deep networks and the inclusion of multi-scale contextual information greatly improve the classification and the model's ability to generalize across space and time. Between the two semantic segmentation models, DeepLab provides more accurate horizontal and vertical classifications than FCN when sufficient training data is available. By using DeepLab, the F1 score can be increased by 4 and 10 percentage points for detecting vertical urban growth compared to FCN and RF for Denmark. For mapping the ten other European cities with training data from Denmark, DeepLab also shows an advantage of 6 percentage points over RF for both horizontal and vertical dimensions. The resulting maps across the years 1985 to 2018 reveal different patterns of urban growth between Copenhagen and Aarhus, the two largest cities in Denmark, illustrating that those cities have used various planning policies in addressing population growth and housing supply challenges. In summary, we propose a transferable deep learning approach for automated, long-term mapping of urban form from Landsat images that is effective in areas experiencing a slow pace of urban growth or with small-scale changes.",
keywords = "Deep learning, Landsat, Multi-temporal classification, Semantic segmentation, Spatial and temporal transferability, Urban form, Urban growth, Urbanization",
author = "Chen, {Tzu Hsin Karen} and Chunping Qiu and Michael Schmitt and Zhu, {Xiao Xiang} and Sabel, {Clive E.} and Prishchepov, {Alexander V.}",
year = "2020",
month = dec,
day = "15",
doi = "10.1016/j.rse.2020.112096",
language = "English",
volume = "251",
journal = "Remote Sensing of Environment",
issn = "0034-4257",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Mapping horizontal and vertical urban densification in Denmark with Landsat time-series from 1985 to 2018

T2 - A semantic segmentation solution

AU - Chen, Tzu Hsin Karen

AU - Qiu, Chunping

AU - Schmitt, Michael

AU - Zhu, Xiao Xiang

AU - Sabel, Clive E.

AU - Prishchepov, Alexander V.

PY - 2020/12/15

Y1 - 2020/12/15

N2 - Landsat imagery is an unparalleled freely available data source that allows reconstructing land-cover and land-use change, including urban form. This paper addresses the challenge of using Landsat data, particularly its 30 m spatial resolution, for monitoring three-dimensional urban densification. Unlike conventional convolutional neural networks (CNNs) for scene recognition resulting in resolution loss, the proposed semantic segmentation framework provides a pixel-wise classification and improves the accuracy of urban form mapping. We compare temporal and spatial transferability of an adapted DeepLab model with a simple fully convolutional network (FCN) and a texture-based random forest (RF) model to map urban density in the two morphological dimensions: horizontal (compact, open, sparse) and vertical (high rise, low rise). We test whether a model trained on the 2014 data can be applied to 2006 and 1995 for Denmark, and examine whether we could use the model trained on the Danish data to accurately map ten other European cities. Our results show that an implementation of deep networks and the inclusion of multi-scale contextual information greatly improve the classification and the model's ability to generalize across space and time. Between the two semantic segmentation models, DeepLab provides more accurate horizontal and vertical classifications than FCN when sufficient training data is available. By using DeepLab, the F1 score can be increased by 4 and 10 percentage points for detecting vertical urban growth compared to FCN and RF for Denmark. For mapping the ten other European cities with training data from Denmark, DeepLab also shows an advantage of 6 percentage points over RF for both horizontal and vertical dimensions. The resulting maps across the years 1985 to 2018 reveal different patterns of urban growth between Copenhagen and Aarhus, the two largest cities in Denmark, illustrating that those cities have used various planning policies in addressing population growth and housing supply challenges. In summary, we propose a transferable deep learning approach for automated, long-term mapping of urban form from Landsat images that is effective in areas experiencing a slow pace of urban growth or with small-scale changes.

AB - Landsat imagery is an unparalleled freely available data source that allows reconstructing land-cover and land-use change, including urban form. This paper addresses the challenge of using Landsat data, particularly its 30 m spatial resolution, for monitoring three-dimensional urban densification. Unlike conventional convolutional neural networks (CNNs) for scene recognition resulting in resolution loss, the proposed semantic segmentation framework provides a pixel-wise classification and improves the accuracy of urban form mapping. We compare temporal and spatial transferability of an adapted DeepLab model with a simple fully convolutional network (FCN) and a texture-based random forest (RF) model to map urban density in the two morphological dimensions: horizontal (compact, open, sparse) and vertical (high rise, low rise). We test whether a model trained on the 2014 data can be applied to 2006 and 1995 for Denmark, and examine whether we could use the model trained on the Danish data to accurately map ten other European cities. Our results show that an implementation of deep networks and the inclusion of multi-scale contextual information greatly improve the classification and the model's ability to generalize across space and time. Between the two semantic segmentation models, DeepLab provides more accurate horizontal and vertical classifications than FCN when sufficient training data is available. By using DeepLab, the F1 score can be increased by 4 and 10 percentage points for detecting vertical urban growth compared to FCN and RF for Denmark. For mapping the ten other European cities with training data from Denmark, DeepLab also shows an advantage of 6 percentage points over RF for both horizontal and vertical dimensions. The resulting maps across the years 1985 to 2018 reveal different patterns of urban growth between Copenhagen and Aarhus, the two largest cities in Denmark, illustrating that those cities have used various planning policies in addressing population growth and housing supply challenges. In summary, we propose a transferable deep learning approach for automated, long-term mapping of urban form from Landsat images that is effective in areas experiencing a slow pace of urban growth or with small-scale changes.

KW - Deep learning

KW - Landsat

KW - Multi-temporal classification

KW - Semantic segmentation

KW - Spatial and temporal transferability

KW - Urban form

KW - Urban growth

KW - Urbanization

U2 - 10.1016/j.rse.2020.112096

DO - 10.1016/j.rse.2020.112096

M3 - Journal article

AN - SCOPUS:85091233420

VL - 251

JO - Remote Sensing of Environment

JF - Remote Sensing of Environment

SN - 0034-4257

M1 - 112096

ER -

ID: 249162128