Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series. / Bergamino, N; Horion, Stéphanie; Stenuite, S; Cornet, Y; Loiselle, S.A.; Plisnier, P.-D.; Descy, J.P.

I: Remote Sensing of Environment, Bind 114, Nr. 4, 2010, s. 772-780.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Bergamino, N, Horion, S, Stenuite, S, Cornet, Y, Loiselle, SA, Plisnier, P-D & Descy, JP 2010, 'Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series', Remote Sensing of Environment, bind 114, nr. 4, s. 772-780. https://doi.org/10.1016/j.rse.2009.11.013

APA

Bergamino, N., Horion, S., Stenuite, S., Cornet, Y., Loiselle, S. A., Plisnier, P-D., & Descy, J. P. (2010). Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series. Remote Sensing of Environment, 114(4), 772-780. https://doi.org/10.1016/j.rse.2009.11.013

Vancouver

Bergamino N, Horion S, Stenuite S, Cornet Y, Loiselle SA, Plisnier P-D o.a. Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series. Remote Sensing of Environment. 2010;114(4):772-780. https://doi.org/10.1016/j.rse.2009.11.013

Author

Bergamino, N ; Horion, Stéphanie ; Stenuite, S ; Cornet, Y ; Loiselle, S.A. ; Plisnier, P.-D. ; Descy, J.P. / Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series. I: Remote Sensing of Environment. 2010 ; Bind 114, Nr. 4. s. 772-780.

Bibtex

@article{49a870b96b474352abefff3ccdff5bd7,
title = "Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series",
abstract = "Lake Tanganyika, the second largest freshwater ecosystem in Africa, is characterised by a significant heterogeneity in phytoplankton concentration linked to its particular hydrodynamics. To gather a proper understanding of primary production, it is necessary to consider spatial and temporal dynamics throughout the lake. In the present work, daily MODIS-AQUA satellite measurements were used to estimate chlorophyll-a concentrations and the diffuse attenuation coefficient (K490) for surface waters. The spatial regionalisation of Lake Tanganyika, based on Empirical Orthogonal Functions of the chlorophyll-a dataset (July 2002–November 2005), allowed for the separation of the lake in 11 spatially coherent and co-varying regions, with 2 delocalised coastal regions. Temporal patterns of chlorophyll-a showed significant differences between regions. Estimation of the daily primary production in each region indicates that the dry season is more productive than the wet season in all regions with few exceptions. Whole-lake daily primary productivity calculated on an annual basis (2003) was 646 ± 142 mg C m− 2 day− 1. Comparing our estimation to previous studies, photosynthetic production in Lake Tanganyika appears to be presently lower (about 15%), which is consistent with other studies which used phytoplankton biovolume and changes of δ13C in the lake sediments. The decrease in lake productivity in recent decades may be associated to changes in climate conditions.",
author = "N Bergamino and St{\'e}phanie Horion and S Stenuite and Y Cornet and S.A. Loiselle and P.-D. Plisnier and J.P. Descy",
year = "2010",
doi = "10.1016/j.rse.2009.11.013",
language = "English",
volume = "114",
pages = "772--780",
journal = "Remote Sensing of Environment",
issn = "0034-4257",
publisher = "Elsevier",
number = "4",

}

RIS

TY - JOUR

T1 - Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series

AU - Bergamino, N

AU - Horion, Stéphanie

AU - Stenuite, S

AU - Cornet, Y

AU - Loiselle, S.A.

AU - Plisnier, P.-D.

AU - Descy, J.P.

PY - 2010

Y1 - 2010

N2 - Lake Tanganyika, the second largest freshwater ecosystem in Africa, is characterised by a significant heterogeneity in phytoplankton concentration linked to its particular hydrodynamics. To gather a proper understanding of primary production, it is necessary to consider spatial and temporal dynamics throughout the lake. In the present work, daily MODIS-AQUA satellite measurements were used to estimate chlorophyll-a concentrations and the diffuse attenuation coefficient (K490) for surface waters. The spatial regionalisation of Lake Tanganyika, based on Empirical Orthogonal Functions of the chlorophyll-a dataset (July 2002–November 2005), allowed for the separation of the lake in 11 spatially coherent and co-varying regions, with 2 delocalised coastal regions. Temporal patterns of chlorophyll-a showed significant differences between regions. Estimation of the daily primary production in each region indicates that the dry season is more productive than the wet season in all regions with few exceptions. Whole-lake daily primary productivity calculated on an annual basis (2003) was 646 ± 142 mg C m− 2 day− 1. Comparing our estimation to previous studies, photosynthetic production in Lake Tanganyika appears to be presently lower (about 15%), which is consistent with other studies which used phytoplankton biovolume and changes of δ13C in the lake sediments. The decrease in lake productivity in recent decades may be associated to changes in climate conditions.

AB - Lake Tanganyika, the second largest freshwater ecosystem in Africa, is characterised by a significant heterogeneity in phytoplankton concentration linked to its particular hydrodynamics. To gather a proper understanding of primary production, it is necessary to consider spatial and temporal dynamics throughout the lake. In the present work, daily MODIS-AQUA satellite measurements were used to estimate chlorophyll-a concentrations and the diffuse attenuation coefficient (K490) for surface waters. The spatial regionalisation of Lake Tanganyika, based on Empirical Orthogonal Functions of the chlorophyll-a dataset (July 2002–November 2005), allowed for the separation of the lake in 11 spatially coherent and co-varying regions, with 2 delocalised coastal regions. Temporal patterns of chlorophyll-a showed significant differences between regions. Estimation of the daily primary production in each region indicates that the dry season is more productive than the wet season in all regions with few exceptions. Whole-lake daily primary productivity calculated on an annual basis (2003) was 646 ± 142 mg C m− 2 day− 1. Comparing our estimation to previous studies, photosynthetic production in Lake Tanganyika appears to be presently lower (about 15%), which is consistent with other studies which used phytoplankton biovolume and changes of δ13C in the lake sediments. The decrease in lake productivity in recent decades may be associated to changes in climate conditions.

U2 - 10.1016/j.rse.2009.11.013

DO - 10.1016/j.rse.2009.11.013

M3 - Journal article

VL - 114

SP - 772

EP - 780

JO - Remote Sensing of Environment

JF - Remote Sensing of Environment

SN - 0034-4257

IS - 4

ER -

ID: 41919132