Quantification of tidal inlet morphodynamics using high-resolution MBES and LiDAR

Publikation: KonferencebidragKonferenceabstrakt til konferenceForskningfagfællebedømt

Standard

Quantification of tidal inlet morphodynamics using high-resolution MBES and LiDAR. / Ernstsen, Verner Brandbyge; Lefebvre, Alice; Fraccascia, Serena; Winter, Christian; Bartholdy, Jesper; Kroon, Aart.

2015. Abstract fra Symposium on River, Coastal and Estuarine Morphodynamics, Iquitos, Peru.

Publikation: KonferencebidragKonferenceabstrakt til konferenceForskningfagfællebedømt

Harvard

Ernstsen, VB, Lefebvre, A, Fraccascia, S, Winter, C, Bartholdy, J & Kroon, A 2015, 'Quantification of tidal inlet morphodynamics using high-resolution MBES and LiDAR', Symposium on River, Coastal and Estuarine Morphodynamics, Iquitos, Peru, 30/08/2015 - 03/09/2015.

APA

Ernstsen, V. B., Lefebvre, A., Fraccascia, S., Winter, C., Bartholdy, J., & Kroon, A. (2015). Quantification of tidal inlet morphodynamics using high-resolution MBES and LiDAR. Abstract fra Symposium on River, Coastal and Estuarine Morphodynamics, Iquitos, Peru.

Vancouver

Ernstsen VB, Lefebvre A, Fraccascia S, Winter C, Bartholdy J, Kroon A. Quantification of tidal inlet morphodynamics using high-resolution MBES and LiDAR. 2015. Abstract fra Symposium on River, Coastal and Estuarine Morphodynamics, Iquitos, Peru.

Author

Ernstsen, Verner Brandbyge ; Lefebvre, Alice ; Fraccascia, Serena ; Winter, Christian ; Bartholdy, Jesper ; Kroon, Aart. / Quantification of tidal inlet morphodynamics using high-resolution MBES and LiDAR. Abstract fra Symposium on River, Coastal and Estuarine Morphodynamics, Iquitos, Peru.1 s.

Bibtex

@conference{fa33286529244b7fba6deacfa7680fc5,
title = "Quantification of tidal inlet morphodynamics using high-resolution MBES and LiDAR",
abstract = "Knowledge on tidal inlet morphodynamics is a prerequisite for developing sustainable planning and management schemes of these highly dynamic coastal systems. Moreover, information on the forcing mechanisms of the different tidal inlet morphological units and the different transport pathways shaping the system is needed to assess the impact of potentially changing environmental conditions, such as accelerating sea level rise, increasing storm intensities and frequencies, or shifting wind directions.The aim of this study is to investigate the morphodynamics in a natural tidal inlet system, the Knudedyb tidal inlet in the Danish Wadden Sea, by coupling investigations in the sub-tidal inlet channel and the adjacent inter-tidal and supra-tidal areas to encompass the complete system. The objective is to develop a conceptual model for the sand transport patterns and morphodynamics in the tidal inlet system.Successive bathymetric surveys were carried out covering the deeper inlet channel using a vessel borne high-resolution shallow-water multibeam echosounder (MBES) system. The exposed inter- and supra-tidal areas and shallow sub-tidal areas were covered by successive airborne topographic and topo-bathymetric surveys using high-resolution red and green Light Detection And Ranging (LiDAR). Detailed digital elevation models with a grid cell size of 1 m x 1 m were generated and analysed geomorphometrically.The analyses reveal a main ebb-directed net sand transport in the main channel; however, due to the geometry of the main channel, displaying a confluent meander bend, confined areas in the main channel are characterised by an opposite-directed net sand transport. In the inter-tidal areas the main net sand transport is flood-directed. However, also here the analyses reveal the existence of oblique second-order sand transport pathways, transporting sand from the inter-tidal flat to the inlet channel during falling tide due to drainage of the inter-tidal areas. As opposed to this, the orientation and migration direction of isolated swash bars on the inter-tidal flat indicate that during storm events, sand is transported from the inlet channel to the intertidal flat.Therefore, in addition to the typical main sand transport directions with net export in the inlet channel and net import over the adjacent inter-tidal flats, these investigations suggest an exchange and possible recirculation of sand between the inlet channel and the inter-tidal flat with the direction of the exchange depending on the forcing conditions, i.e. whether calm or storm conditions.AcknowledgementsThis work is funded by the Danish Council for Independent Research | Natural Sciences under the project “Process-based understanding and prediction of morphodynamics in a natural coastal system in response to climate change” (Steno Grant no. 10-081102).",
author = "Ernstsen, {Verner Brandbyge} and Alice Lefebvre and Serena Fraccascia and Christian Winter and Jesper Bartholdy and Aart Kroon",
year = "2015",
language = "English",
note = "Symposium on River, Coastal and Estuarine Morphodynamics, RCEM ; Conference date: 30-08-2015 Through 03-09-2015",

}

RIS

TY - ABST

T1 - Quantification of tidal inlet morphodynamics using high-resolution MBES and LiDAR

AU - Ernstsen, Verner Brandbyge

AU - Lefebvre, Alice

AU - Fraccascia, Serena

AU - Winter, Christian

AU - Bartholdy, Jesper

AU - Kroon, Aart

N1 - Conference code: 9th

PY - 2015

Y1 - 2015

N2 - Knowledge on tidal inlet morphodynamics is a prerequisite for developing sustainable planning and management schemes of these highly dynamic coastal systems. Moreover, information on the forcing mechanisms of the different tidal inlet morphological units and the different transport pathways shaping the system is needed to assess the impact of potentially changing environmental conditions, such as accelerating sea level rise, increasing storm intensities and frequencies, or shifting wind directions.The aim of this study is to investigate the morphodynamics in a natural tidal inlet system, the Knudedyb tidal inlet in the Danish Wadden Sea, by coupling investigations in the sub-tidal inlet channel and the adjacent inter-tidal and supra-tidal areas to encompass the complete system. The objective is to develop a conceptual model for the sand transport patterns and morphodynamics in the tidal inlet system.Successive bathymetric surveys were carried out covering the deeper inlet channel using a vessel borne high-resolution shallow-water multibeam echosounder (MBES) system. The exposed inter- and supra-tidal areas and shallow sub-tidal areas were covered by successive airborne topographic and topo-bathymetric surveys using high-resolution red and green Light Detection And Ranging (LiDAR). Detailed digital elevation models with a grid cell size of 1 m x 1 m were generated and analysed geomorphometrically.The analyses reveal a main ebb-directed net sand transport in the main channel; however, due to the geometry of the main channel, displaying a confluent meander bend, confined areas in the main channel are characterised by an opposite-directed net sand transport. In the inter-tidal areas the main net sand transport is flood-directed. However, also here the analyses reveal the existence of oblique second-order sand transport pathways, transporting sand from the inter-tidal flat to the inlet channel during falling tide due to drainage of the inter-tidal areas. As opposed to this, the orientation and migration direction of isolated swash bars on the inter-tidal flat indicate that during storm events, sand is transported from the inlet channel to the intertidal flat.Therefore, in addition to the typical main sand transport directions with net export in the inlet channel and net import over the adjacent inter-tidal flats, these investigations suggest an exchange and possible recirculation of sand between the inlet channel and the inter-tidal flat with the direction of the exchange depending on the forcing conditions, i.e. whether calm or storm conditions.AcknowledgementsThis work is funded by the Danish Council for Independent Research | Natural Sciences under the project “Process-based understanding and prediction of morphodynamics in a natural coastal system in response to climate change” (Steno Grant no. 10-081102).

AB - Knowledge on tidal inlet morphodynamics is a prerequisite for developing sustainable planning and management schemes of these highly dynamic coastal systems. Moreover, information on the forcing mechanisms of the different tidal inlet morphological units and the different transport pathways shaping the system is needed to assess the impact of potentially changing environmental conditions, such as accelerating sea level rise, increasing storm intensities and frequencies, or shifting wind directions.The aim of this study is to investigate the morphodynamics in a natural tidal inlet system, the Knudedyb tidal inlet in the Danish Wadden Sea, by coupling investigations in the sub-tidal inlet channel and the adjacent inter-tidal and supra-tidal areas to encompass the complete system. The objective is to develop a conceptual model for the sand transport patterns and morphodynamics in the tidal inlet system.Successive bathymetric surveys were carried out covering the deeper inlet channel using a vessel borne high-resolution shallow-water multibeam echosounder (MBES) system. The exposed inter- and supra-tidal areas and shallow sub-tidal areas were covered by successive airborne topographic and topo-bathymetric surveys using high-resolution red and green Light Detection And Ranging (LiDAR). Detailed digital elevation models with a grid cell size of 1 m x 1 m were generated and analysed geomorphometrically.The analyses reveal a main ebb-directed net sand transport in the main channel; however, due to the geometry of the main channel, displaying a confluent meander bend, confined areas in the main channel are characterised by an opposite-directed net sand transport. In the inter-tidal areas the main net sand transport is flood-directed. However, also here the analyses reveal the existence of oblique second-order sand transport pathways, transporting sand from the inter-tidal flat to the inlet channel during falling tide due to drainage of the inter-tidal areas. As opposed to this, the orientation and migration direction of isolated swash bars on the inter-tidal flat indicate that during storm events, sand is transported from the inlet channel to the intertidal flat.Therefore, in addition to the typical main sand transport directions with net export in the inlet channel and net import over the adjacent inter-tidal flats, these investigations suggest an exchange and possible recirculation of sand between the inlet channel and the inter-tidal flat with the direction of the exchange depending on the forcing conditions, i.e. whether calm or storm conditions.AcknowledgementsThis work is funded by the Danish Council for Independent Research | Natural Sciences under the project “Process-based understanding and prediction of morphodynamics in a natural coastal system in response to climate change” (Steno Grant no. 10-081102).

M3 - Conference abstract for conference

T2 - Symposium on River, Coastal and Estuarine Morphodynamics

Y2 - 30 August 2015 through 3 September 2015

ER -

ID: 153143570