The crystal structure of ferdowsiite Ag8Sb4(As,Sb)4S16 and its relations to other ABX2 (A=Ag; B=As,Sb,Bi; X=S,Se) structures

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

The crystal structure of ferdowsiite Ag8Sb4(As,Sb)4S16 and its relations to other ABX2 (A=Ag; B=As,Sb,Bi; X=S,Se) structures. / Makovicky, Emil; Topa, Dan.

I: Zeitschrift für Kristallographie - Crystalline Materials, Bind 229, Nr. 12, 2014, s. 783-795.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Makovicky, E & Topa, D 2014, 'The crystal structure of ferdowsiite Ag8Sb4(As,Sb)4S16 and its relations to other ABX2 (A=Ag; B=As,Sb,Bi; X=S,Se) structures', Zeitschrift für Kristallographie - Crystalline Materials, bind 229, nr. 12, s. 783-795. https://doi.org/10.1515/zkri-2014-1771

APA

Makovicky, E., & Topa, D. (2014). The crystal structure of ferdowsiite Ag8Sb4(As,Sb)4S16 and its relations to other ABX2 (A=Ag; B=As,Sb,Bi; X=S,Se) structures. Zeitschrift für Kristallographie - Crystalline Materials, 229(12), 783-795. https://doi.org/10.1515/zkri-2014-1771

Vancouver

Makovicky E, Topa D. The crystal structure of ferdowsiite Ag8Sb4(As,Sb)4S16 and its relations to other ABX2 (A=Ag; B=As,Sb,Bi; X=S,Se) structures. Zeitschrift für Kristallographie - Crystalline Materials. 2014;229(12):783-795. https://doi.org/10.1515/zkri-2014-1771

Author

Makovicky, Emil ; Topa, Dan. / The crystal structure of ferdowsiite Ag8Sb4(As,Sb)4S16 and its relations to other ABX2 (A=Ag; B=As,Sb,Bi; X=S,Se) structures. I: Zeitschrift für Kristallographie - Crystalline Materials. 2014 ; Bind 229, Nr. 12. s. 783-795.

Bibtex

@article{0067af7d65c946b4894805f7a97bba53,
title = "The crystal structure of ferdowsiite Ag8Sb4(As,Sb)4S16 and its relations to other ABX2 (A=Ag; B=As,Sb,Bi; X=S,Se) structures",
abstract = "Ferdowsiite is monoclinic, a=8.677(2) {\AA}, b=5.799(1) {\AA}, c=13.839(3) {\AA}, β=96.175(4)°, unit cell volume 692.3 {\AA}3. Space group P21/n. Refinement from single-crystal X-ray diffraction data reached R1=0.028 for 626 Fo>4σ(Fo) and 0.032 for all 716 Fo used. Value of wR2 is 0.065. The crystal structure of ferdowsiite, approximately Ag8Sb4(As,Sb)4S16, contains four distinct cation and four different anion sites in the asymmetric unit, all in general positions. Besides two Ag sites and one Sb site, the crystal structure contains one mixed As-Sb coordination polyhedron (0.63 As and 0.37 Sb in the site). The Sb1 site has three short Sb-S bonds 2.503–2.645 {\AA}. As and Sb in the mixed site were refined separately, with isotropic displacement coefficients. As has typical bond length values of 2.248–2.354 {\AA} whereas Sb has 2.443–2.392 {\AA}, i.e., the observed ligand positions are visibly influenced by the predominant arsenic. The crystal structure of ferdowsiite is a superstructure of a PbS like motif. The {100} planes of the PbS-like substructure are the (105̅), (301) and (010) planes in terms of the ferdowsiite lattice. The structure contains zig-zag chains of Sb1 connected via short Sb-S bonds and flanked by (Sb,As)S3 groups and Ag polyhedra. Groups of four SbS5-and (Sb,As)S5 coordination pyramids form an interconnected network with interspaces which accommodate both the lone electron pairs and the tetrahedrally coordinated Ag situated in coordination octahedra. Partial lead substitution takes place in the coordination polyhedra of Sb1 and Ag2. In the paper, the structure is compared with the other Ag(As,Sb,Bi)(S,Se)2 structures. The configurationally closest PbS-based homeotypic structure, however, is diaphorite, which is an ordered superstructure of the ferdowsiite arrangement, with a substantial presence of Pb, and without As.",
keywords = "Faculty of Science, crystal structure , Ag-As-Sb sulfide",
author = "Emil Makovicky and Dan Topa",
year = "2014",
doi = "10.1515/zkri-2014-1771",
language = "English",
volume = "229",
pages = "783--795",
journal = "Zeitschfrift fur Kristallographie",
issn = "2194-4946",
publisher = "Oldenbourg Wissenschaftsverlag GmbH",
number = "12",

}

RIS

TY - JOUR

T1 - The crystal structure of ferdowsiite Ag8Sb4(As,Sb)4S16 and its relations to other ABX2 (A=Ag; B=As,Sb,Bi; X=S,Se) structures

AU - Makovicky, Emil

AU - Topa, Dan

PY - 2014

Y1 - 2014

N2 - Ferdowsiite is monoclinic, a=8.677(2) Å, b=5.799(1) Å, c=13.839(3) Å, β=96.175(4)°, unit cell volume 692.3 Å3. Space group P21/n. Refinement from single-crystal X-ray diffraction data reached R1=0.028 for 626 Fo>4σ(Fo) and 0.032 for all 716 Fo used. Value of wR2 is 0.065. The crystal structure of ferdowsiite, approximately Ag8Sb4(As,Sb)4S16, contains four distinct cation and four different anion sites in the asymmetric unit, all in general positions. Besides two Ag sites and one Sb site, the crystal structure contains one mixed As-Sb coordination polyhedron (0.63 As and 0.37 Sb in the site). The Sb1 site has three short Sb-S bonds 2.503–2.645 Å. As and Sb in the mixed site were refined separately, with isotropic displacement coefficients. As has typical bond length values of 2.248–2.354 Å whereas Sb has 2.443–2.392 Å, i.e., the observed ligand positions are visibly influenced by the predominant arsenic. The crystal structure of ferdowsiite is a superstructure of a PbS like motif. The {100} planes of the PbS-like substructure are the (105̅), (301) and (010) planes in terms of the ferdowsiite lattice. The structure contains zig-zag chains of Sb1 connected via short Sb-S bonds and flanked by (Sb,As)S3 groups and Ag polyhedra. Groups of four SbS5-and (Sb,As)S5 coordination pyramids form an interconnected network with interspaces which accommodate both the lone electron pairs and the tetrahedrally coordinated Ag situated in coordination octahedra. Partial lead substitution takes place in the coordination polyhedra of Sb1 and Ag2. In the paper, the structure is compared with the other Ag(As,Sb,Bi)(S,Se)2 structures. The configurationally closest PbS-based homeotypic structure, however, is diaphorite, which is an ordered superstructure of the ferdowsiite arrangement, with a substantial presence of Pb, and without As.

AB - Ferdowsiite is monoclinic, a=8.677(2) Å, b=5.799(1) Å, c=13.839(3) Å, β=96.175(4)°, unit cell volume 692.3 Å3. Space group P21/n. Refinement from single-crystal X-ray diffraction data reached R1=0.028 for 626 Fo>4σ(Fo) and 0.032 for all 716 Fo used. Value of wR2 is 0.065. The crystal structure of ferdowsiite, approximately Ag8Sb4(As,Sb)4S16, contains four distinct cation and four different anion sites in the asymmetric unit, all in general positions. Besides two Ag sites and one Sb site, the crystal structure contains one mixed As-Sb coordination polyhedron (0.63 As and 0.37 Sb in the site). The Sb1 site has three short Sb-S bonds 2.503–2.645 Å. As and Sb in the mixed site were refined separately, with isotropic displacement coefficients. As has typical bond length values of 2.248–2.354 Å whereas Sb has 2.443–2.392 Å, i.e., the observed ligand positions are visibly influenced by the predominant arsenic. The crystal structure of ferdowsiite is a superstructure of a PbS like motif. The {100} planes of the PbS-like substructure are the (105̅), (301) and (010) planes in terms of the ferdowsiite lattice. The structure contains zig-zag chains of Sb1 connected via short Sb-S bonds and flanked by (Sb,As)S3 groups and Ag polyhedra. Groups of four SbS5-and (Sb,As)S5 coordination pyramids form an interconnected network with interspaces which accommodate both the lone electron pairs and the tetrahedrally coordinated Ag situated in coordination octahedra. Partial lead substitution takes place in the coordination polyhedra of Sb1 and Ag2. In the paper, the structure is compared with the other Ag(As,Sb,Bi)(S,Se)2 structures. The configurationally closest PbS-based homeotypic structure, however, is diaphorite, which is an ordered superstructure of the ferdowsiite arrangement, with a substantial presence of Pb, and without As.

KW - Faculty of Science

KW - crystal structure

KW - Ag-As-Sb sulfide

U2 - 10.1515/zkri-2014-1771

DO - 10.1515/zkri-2014-1771

M3 - Journal article

VL - 229

SP - 783

EP - 795

JO - Zeitschfrift fur Kristallographie

JF - Zeitschfrift fur Kristallographie

SN - 2194-4946

IS - 12

ER -

ID: 129965520